ترغب بنشر مسار تعليمي؟ اضغط هنا

StrucTexT: Structured Text Understanding with Multi-Modal Transformers

267   0   0.0 ( 0 )
 نشر من قبل Xiameng Qin
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Structured text understanding on Visually Rich Documents (VRDs) is a crucial part of Document Intelligence. Due to the complexity of content and layout in VRDs, structured text understanding has been a challenging task. Most existing studies decoupled this problem into two sub-tasks: entity labeling and entity linking, which require an entire understanding of the context of documents at both token and segment levels. However, little work has been concerned with the solutions that efficiently extract the structured data from different levels. This paper proposes a unified framework named StrucTexT, which is flexible and effective for handling both sub-tasks. Specifically, based on the transformer, we introduce a segment-token aligned encoder to deal with the entity labeling and entity linking tasks at different levels of granularity. Moreover, we design a novel pre-training strategy with three self-supervised tasks to learn a richer representation. StrucTexT uses the existing Masked Visual Language Modeling task and the new Sentence Length Prediction and Paired Boxes Direction tasks to incorporate the multi-modal information across text, image, and layout. We evaluate our method for structured text understanding at segment-level and token-level and show it outperforms the state-of-the-art counterparts with significantly superior performance on the FUNSD, SROIE, and EPHOIE datasets.



قيم البحث

اقرأ أيضاً

We propose Pixel-BERT to align image pixels with text by deep multi-modal transformers that jointly learn visual and language embedding in a unified end-to-end framework. We aim to build a more accurate and thorough connection between image pixels an d language semantics directly from image and sentence pairs instead of using region-based image features as the most recent vision and language tasks. Our Pixel-BERT which aligns semantic connection in pixel and text level solves the limitation of task-specific visual representation for vision and language tasks. It also relieves the cost of bounding box annotations and overcomes the unbalance between semantic labels in visual task and language semantic. To provide a better representation for down-stream tasks, we pre-train a universal end-to-end model with image and sentence pairs from Visual Genome dataset and MS-COCO dataset. We propose to use a random pixel sampling mechanism to enhance the robustness of visual representation and to apply the Masked Language Model and Image-Text Matching as pre-training tasks. Extensive experiments on downstream tasks with our pre-trained model show that our approach makes the most state-of-the-arts in downstream tasks, including Visual Question Answering (VQA), image-text retrieval, Natural Language for Visual Reasoning for Real (NLVR). Particularly, we boost the performance of a single model in VQA task by 2.17 points compared with SOTA under fair comparison.
Given an input video, its associated audio, and a brief caption, the audio-visual scene aware dialog (AVSD) task requires an agent to indulge in a question-answer dialog with a human about the audio-visual content. This task thus poses a challenging multi-modal representation learning and reasoning scenario, advancements into which could influence several human-machine interaction applications. To solve this task, we introduce a semantics-controlled multi-modal shuffled Transformer reasoning framework, consisting of a sequence of Transformer modules, each taking a modality as input and producing representations conditioned on the input question. Our proposed Transformer variant uses a shuffling scheme on their multi-head outputs, demonstrating better regularization. To encode fine-grained visual information, we present a novel dynamic scene graph representation learning pipeline that consists of an intra-frame reasoning layer producing spatio-semantic graph representations for every frame, and an inter-frame aggregation module capturing temporal cues. Our entire pipeline is trained end-to-end. We present experiments on the benchmark AVSD dataset, both on answer generation and selection tasks. Our results demonstrate state-of-the-art performances on all evaluation metrics.
Multi-modal reasoning systems rely on a pre-trained object detector to extract regions of interest from the image. However, this crucial module is typically used as a black box, trained independently of the downstream task and on a fixed vocabulary o f objects and attributes. This makes it challenging for such systems to capture the long tail of visual concepts expressed in free form text. In this paper we propose MDETR, an end-to-end modulated detector that detects objects in an image conditioned on a raw text query, like a caption or a question. We use a transformer-based architecture to reason jointly over text and image by fusing the two modalities at an early stage of the model. We pre-train the network on 1.3M text-image pairs, mined from pre-existing multi-modal datasets having explicit alignment between phrases in text and objects in the image. We then fine-tune on several downstream tasks such as phrase grounding, referring expression comprehension and segmentation, achieving state-of-the-art results on popular benchmarks. We also investigate the utility of our model as an object detector on a given label set when fine-tuned in a few-shot setting. We show that our pre-training approach provides a way to handle the long tail of object categories which have very few labelled instances. Our approach can be easily extended for visual question answering, achieving competitive performance on GQA and CLEVR. The code and models are available at https://github.com/ashkamath/mdetr.
The widespread dissemination of forged images generated by Deepfake techniques has posed a serious threat to the trustworthiness of digital information. This demands effective approaches that can detect perceptually convincing Deepfakes generated by advanced manipulation techniques. Most existing approaches combat Deepfakes with deep neural networks by mapping the input image to a binary prediction without capturing the consistency among different pixels. In this paper, we aim to capture the subtle manipulation artifacts at different scales for Deepfake detection. We achieve this with transformer models, which have recently demonstrated superior performance in modeling dependencies between pixels for a variety of recognition tasks in computer vision. In particular, we introduce a Multi-modal Multi-scale TRansformer (M2TR), which uses a multi-scale transformer that operates on patches of different sizes to detect the local inconsistency at different spatial levels. To improve the detection results and enhance the robustness of our method to image compression, M2TR also takes frequency information, which is further combined with RGB features using a cross modality fusion module. Developing and evaluating Deepfake detection methods requires large-scale datasets. However, we observe that samples in existing benchmarks contain severe artifacts and lack diversity. This motivates us to introduce a high-quality Deepfake dataset, SR-DF, which consists of 4,000 DeepFake videos generated by state-of-the-art face swapping and facial reenactment methods. On three Deepfake datasets, we conduct extensive experiments to verify the effectiveness of the proposed method, which outperforms state-of-the-art Deepfake detection methods.
Recent advances in using retrieval components over external knowledge sources have shown impressive results for a variety of downstream tasks in natural language processing. Here, we explore the use of unstructured external knowledge sources of image s and their corresponding captions for improving visual question answering (VQA). First, we train a novel alignment model for embedding images and captions in the same space, which achieves substantial improvement in performance on image-caption retrieval w.r.t. similar methods. Second, we show that retrieval-augmented multi-modal transformers using the trained alignment model improve results on VQA over strong baselines. We further conduct extensive experiments to establish the promise of this approach, and examine novel applications for inference time such as hot-swapping indices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا