ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-Modal Retrieval Augmentation for Multi-Modal Classification

120   0   0.0 ( 0 )
 نشر من قبل Shir Gur
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent advances in using retrieval components over external knowledge sources have shown impressive results for a variety of downstream tasks in natural language processing. Here, we explore the use of unstructured external knowledge sources of images and their corresponding captions for improving visual question answering (VQA). First, we train a novel alignment model for embedding images and captions in the same space, which achieves substantial improvement in performance on image-caption retrieval w.r.t. similar methods. Second, we show that retrieval-augmented multi-modal transformers using the trained alignment model improve results on VQA over strong baselines. We further conduct extensive experiments to establish the promise of this approach, and examine novel applications for inference time such as hot-swapping indices.

قيم البحث

اقرأ أيضاً

Data augmentation is an approach that can effectively improve the performance of multimodal machine learning. This paper introduces a generative model for data augmentation by leveraging the correlations among multiple modalities. Different from conv entional data augmentation approaches that apply low level operations with deterministic heuristics, our method proposes to learn an augmentation sampler that generates samples of the target modality conditioned on observed modalities in the variational auto-encoder framework. Additionally, the proposed model is able to quantify the confidence of augmented data by its generative probability, and can be jointly updated with a downstream pipeline. Experiments on Visual Question Answering tasks demonstrate the effectiveness of the proposed generative model, which is able to boost the strong UpDn-based models to the state-of-the-art performance.
Cross-modal retrieval methods build a common representation space for samples from multiple modalities, typically from the vision and the language domains. For images and their captions, the multiplicity of the correspondences makes the task particul arly challenging. Given an image (respectively a caption), there are multiple captions (respectively images) that equally make sense. In this paper, we argue that deterministic functions are not sufficiently powerful to capture such one-to-many correspondences. Instead, we propose to use Probabilistic Cross-Modal Embedding (PCME), where samples from the different modalities are represented as probabilistic distributions in the common embedding space. Since common benchmarks such as COCO suffer from non-exhaustive annotations for cross-modal matches, we propose to additionally evaluate retrieval on the CUB dataset, a smaller yet clean database where all possible image-caption pairs are annotated. We extensively ablate PCME and demonstrate that it not only improves the retrieval performance over its deterministic counterpart but also provides uncertainty estimates that render the embeddings more interpretable. Code is available at https://github.com/naver-ai/pcme
Current state-of-the-art approaches to cross-modal retrieval process text and visual input jointly, relying on Transformer-based architectures with cross-attention mechanisms that attend over all words and objects in an image. While offering unmatche d retrieval performance, such models: 1) are typically pretrained from scratch and thus less scalable, 2) suffer from huge retrieval latency and inefficiency issues, which makes them impractical in realistic applications. To address these crucial gaps towards both improved and efficient cross-modal retrieval, we propose a novel fine-tuning framework which turns any pretrained text-image multi-modal model into an efficient retrieval model. The framework is based on a cooperative retrieve-and-rerank approach which combines: 1) twin networks to separately encode all items of a corpus, enabling efficient initial retrieval, and 2) a cross-encoder component for a more nuanced (i.e., smarter) ranking of the retrieved small set of items. We also propose to jointly fine-tune the two components with shared weights, yielding a more parameter-efficient model. Our experiments on a series of standard cross-modal retrieval benchmarks in monolingual, multilingual, and zero-shot setups, demonstrate improved accuracy and huge efficiency benefits over the state-of-the-art cross-encoders.
In this paper we study the problem of learning from multiple modal data for purpose of document classification. In this problem, each document is composed two different modals of data, i.e., an image and a text. Cross-modal factor analysis (CFA) has been proposed to project the two different modals of data to a shared data space, so that the classification of a image or a text can be performed directly in this space. A disadvantage of CFA is that it has ignored the supervision information. In this paper, we improve CFA by incorporating the supervision information to represent and classify both image and text modals of documents. We project both image and text data to a shared data space by factor analysis, and then train a class label predictor in the shared space to use the class label information. The factor analysis parameter and the predictor parameter are learned jointly by solving one single objective function. With this objective function, we minimize the distance between the projections of image and text of the same document, and the classification error of the projection measured by hinge loss function. The objective function is optimized by an alternate optimization strategy in an iterative algorithm. Experiments in two different multiple modal document data sets show the advantage of the proposed algorithm over other CFA methods.
133 - Chunbin Gu , Jiajun Bu , Xixi Zhou 2021
In this paper, we study the cross-modal image retrieval, where the inputs contain a source image plus some text that describes certain modifications to this image and the desired image. Prior work usually uses a three-stage strategy to tackle this ta sk: 1) extract the features of the inputs; 2) fuse the feature of the source image and its modified text to obtain fusion feature; 3) learn a similarity metric between the desired image and the source image + modified text by using deep metric learning. Since classical image/text encoders can learn the useful representation and common pair-based loss functions of distance metric learning are enough for cross-modal retrieval, people usually improve retrieval accuracy by designing new fusion networks. However, these methods do not successfully handle the modality gap caused by the inconsistent distribution and representation of the features of different modalities, which greatly influences the feature fusion and similarity learning. To alleviate this problem, we adopt the contrastive self-supervised learning method Deep InforMax (DIM) to our approach to bridge this gap by enhancing the dependence between the text, the image, and their fusion. Specifically, our method narrows the modality gap between the text modality and the image modality by maximizing mutual information between their not exactly semantically identical representation. Moreover, we seek an effective common subspace for the semantically same fusion feature and desired images feature by utilizing Deep InforMax between the low-level layer of the image encoder and the high-level layer of the fusion network. Extensive experiments on three large-scale benchmark datasets show that we have bridged the modality gap between different modalities and achieve state-of-the-art retrieval performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا