ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic Graph Representation Learning for Video Dialog via Multi-Modal Shuffled Transformers

205   0   0.0 ( 0 )
 نشر من قبل Anoop Cherian
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Given an input video, its associated audio, and a brief caption, the audio-visual scene aware dialog (AVSD) task requires an agent to indulge in a question-answer dialog with a human about the audio-visual content. This task thus poses a challenging multi-modal representation learning and reasoning scenario, advancements into which could influence several human-machine interaction applications. To solve this task, we introduce a semantics-controlled multi-modal shuffled Transformer reasoning framework, consisting of a sequence of Transformer modules, each taking a modality as input and producing representations conditioned on the input question. Our proposed Transformer variant uses a shuffling scheme on their multi-head outputs, demonstrating better regularization. To encode fine-grained visual information, we present a novel dynamic scene graph representation learning pipeline that consists of an intra-frame reasoning layer producing spatio-semantic graph representations for every frame, and an inter-frame aggregation module capturing temporal cues. Our entire pipeline is trained end-to-end. We present experiments on the benchmark AVSD dataset, both on answer generation and selection tasks. Our results demonstrate state-of-the-art performances on all evaluation metrics.



قيم البحث

اقرأ أيضاً

The recent success of Transformers in the language domain has motivated adapting it to a multimodal setting, where a new visual model is trained in tandem with an already pretrained language model. However, due to the excessive memory requirements fr om Transformers, existing work typically fixes the language model and train only the vision module, which limits its ability to learn cross-modal information in an end-to-end manner. In this work, we focus on reducing the parameters of multimodal Transformers in the context of audio-visual video representation learning. We alleviate the high memory requirement by sharing the weights of Transformers across layers and modalities; we decompose the Transformer into modality-specific and modality-shared parts so that the model learns the dynamics of each modality both individually and together, and propose a novel parameter sharing scheme based on low-rank approximation. We show that our approach reduces parameters up to 80$%$, allowing us to train our model end-to-end from scratch. We also propose a negative sampling approach based on an instance similarity measured on the CNN embedding space that our model learns with the Transformers. To demonstrate our approach, we pretrain our model on 30-second clips from Kinetics-700 and transfer it to audio-visual classification tasks.
266 - Yulin Li , Yuxi Qian , Yuchen Yu 2021
Structured text understanding on Visually Rich Documents (VRDs) is a crucial part of Document Intelligence. Due to the complexity of content and layout in VRDs, structured text understanding has been a challenging task. Most existing studies decouple d this problem into two sub-tasks: entity labeling and entity linking, which require an entire understanding of the context of documents at both token and segment levels. However, little work has been concerned with the solutions that efficiently extract the structured data from different levels. This paper proposes a unified framework named StrucTexT, which is flexible and effective for handling both sub-tasks. Specifically, based on the transformer, we introduce a segment-token aligned encoder to deal with the entity labeling and entity linking tasks at different levels of granularity. Moreover, we design a novel pre-training strategy with three self-supervised tasks to learn a richer representation. StrucTexT uses the existing Masked Visual Language Modeling task and the new Sentence Length Prediction and Paired Boxes Direction tasks to incorporate the multi-modal information across text, image, and layout. We evaluate our method for structured text understanding at segment-level and token-level and show it outperforms the state-of-the-art counterparts with significantly superior performance on the FUNSD, SROIE, and EPHOIE datasets.
This paper proposes a method to gain extra supervision via multi-task learning for multi-modal video question answering. Multi-modal video question answering is an important task that aims at the joint understanding of vision and language. However, e stablishing large scale dataset for multi-modal video question answering is expensive and the existing benchmarks are relatively small to provide sufficient supervision. To overcome this challenge, this paper proposes a multi-task learning method which is composed of three main components: (1) multi-modal video question answering network that answers the question based on the both video and subtitle feature, (2) temporal retrieval network that predicts the time in the video clip where the question was generated from and (3) modality alignment network that solves metric learning problem to find correct association of video and subtitle modalities. By simultaneously solving related auxiliary tasks with hierarchically shared intermediate layers, the extra synergistic supervisions are provided. Motivated by curriculum learning, multi task ratio scheduling is proposed to learn easier task earlier to set inductive bias at the beginning of the training. The experiments on publicly available dataset TVQA shows state-of-the-art results, and ablation studies are conducted to prove the statistical validity.
Video grounding aims to localize the temporal segment corresponding to a sentence query from an untrimmed video. Almost all existing video grounding methods fall into two frameworks: 1) Top-down model: It predefines a set of segment candidates and th en conducts segment classification and regression. 2) Bottom-up model: It directly predicts frame-wise probabilities of the referential segment boundaries. However, all these methods are not end-to-end, ie, they always rely on some time-consuming post-processing steps to refine predictions. To this end, we reformulate video grounding as a set prediction task and propose a novel end-to-end multi-modal Transformer model, dubbed as textbf{GTR}. Specifically, GTR has two encoders for video and language encoding, and a cross-modal decoder for grounding prediction. To facilitate the end-to-end training, we use a Cubic Embedding layer to transform the raw videos into a set of visual tokens. To better fuse these two modalities in the decoder, we design a new Multi-head Cross-Modal Attention. The whole GTR is optimized via a Many-to-One matching loss. Furthermore, we conduct comprehensive studies to investigate different model design choices. Extensive results on three benchmarks have validated the superiority of GTR. All three typical GTR variants achieve record-breaking performance on all datasets and metrics, with several times faster inference speed.
Identifying a short segment in a long video that semantically matches a text query is a challenging task that has important application potentials in language-based video search, browsing, and navigation. Typical retrieval systems respond to a query with either a whole video or a pre-defined video segment, but it is challenging to localize undefined segments in untrimmed and unsegmented videos where exhaustively searching over all possible segments is intractable. The outstanding challenge is that the representation of a video must account for different levels of granularity in the temporal domain. To tackle this problem, we propose the HierArchical Multi-Modal EncodeR (HAMMER) that encodes a video at both the coarse-grained clip level and the fine-grained frame level to extract information at different scales based on multiple subtasks, namely, video retrieval, segment temporal localization, and masked language modeling. We conduct extensive experiments to evaluate our model on moment localization in video corpus on ActivityNet Captions and TVR datasets. Our approach outperforms the previous methods as well as strong baselines, establishing new state-of-the-art for this task.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا