ترغب بنشر مسار تعليمي؟ اضغط هنا

PAC-Bayes Bounds for Meta-learning with Data-Dependent Prior

90   0   0.0 ( 0 )
 نشر من قبل Tianyu Liu
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

By leveraging experience from previous tasks, meta-learning algorithms can achieve effective fast adaptation ability when encountering new tasks. However it is unclear how the generalization property applies to new tasks. Probably approximately correct (PAC) Bayes bound theory provides a theoretical framework to analyze the generalization performance for meta-learning. We derive three novel generalisation error bounds for meta-learning based on PAC-Bayes relative entropy bound. Furthermore, using the empirical risk minimization (ERM) method, a PAC-Bayes bound for meta-learning with data-dependent prior is developed. Experiments illustrate that the proposed three PAC-Bayes bounds for meta-learning guarantee a competitive generalization performance guarantee, and the extended PAC-Bayes bound with data-dependent prior can achieve rapid convergence ability.



قيم البحث

اقرأ أيضاً

We introduce a new and rigorously-formulated PAC-Bayes few-shot meta-learning algorithm that implicitly learns a prior distribution of the model of interest. Our proposed method extends the PAC-Bayes framework from a single task setting to the few-sh ot learning setting to upper-bound generalisation errors on unseen tasks and samples. We also propose a generative-based approach to model the shared prior and the posterior of task-specific model parameters more expressively compared to the usual diagonal Gaussian assumption. We show that the models trained with our proposed meta-learning algorithm are well calibrated and accurate, with state-of-the-art calibration and classification results on few-shot classification (mini-ImageNet and tiered-ImageNet) and regression (multi-modal task-distribution regression) benchmarks.
Adding domain knowledge to a learning system is known to improve results. In multi-parameter Bayesian frameworks, such knowledge is incorporated as a prior. On the other hand, various model parameters can have different learning rates in real-world p roblems, especially with skewed data. Two often-faced challenges in Operation Management and Management Science applications are the absence of informative priors, and the inability to control parameter learning rates. In this study, we propose a hierarchical Empirical Bayes approach that addresses both challenges, and that can generalize to any Bayesian framework. Our method learns empirical meta-priors from the data itself and uses them to decouple the learning rates of first-order and second-order features (or any other given feature grouping) in a Generalized Linear Model. As the first-order features are likely to have a more pronounced effect on the outcome, focusing on learning first-order weights first is likely to improve performance and convergence time. Our Empirical Bayes method clamps features in each group together and uses the deployed models observed data to empirically compute a hierarchical prior in hindsight. We report theoretical results for the unbiasedness, strong consistency, and optimal frequentist cumulative regret properties of our meta-prior variance estimator. We apply our method to a standard supervised learning optimization problem, as well as an online combinatorial optimization problem in a contextual bandit setting implemented in an Amazon production system. Both during simulations and live experiments, our method shows marked improvements, especially in cases of small traffic. Our findings are promising, as optimizing over sparse data is often a challenge.
The dominant term in PAC-Bayes bounds is often the Kullback--Leibler divergence between the posterior and prior. For so-called linear PAC-Bayes risk bounds based on the empirical risk of a fixed posterior kernel, it is possible to minimize the expect ed value of the bound by choosing the prior to be the expected posterior, which we call the oracle prior on the account that it is distribution dependent. In this work, we show that the bound based on the oracle prior can be suboptimal: In some cases, a stronger bound is obtained by using a data-dependent oracle prior, i.e., a conditional expectation of the posterior, given a subset of the training data that is then excluded from the empirical risk term. While using data to learn a prior is a known heuristic, its essential role in optimal bounds is new. In fact, we show that using data can mean the difference between vacuous and nonvacuous bounds. We apply this new principle in the setting of nonconvex learning, simulating data-dependent oracle priors on MNIST and Fashion MNIST with and without held-out data, and demonstrating new nonvacuous bounds in both cases.
Despite recent advances in its theoretical understanding, there still remains a significant gap in the ability of existing PAC-Bayesian theories on meta-learning to explain performance improvements in the few-shot learning setting, where the number o f training examples in the target tasks is severely limited. This gap originates from an assumption in the existing theories which supposes that the number of training examples in the observed tasks and the number of training examples in the target tasks follow the same distribution, an assumption that rarely holds in practice. By relaxing this assumption, we develop two PAC-Bayesian bounds tailored for the few-shot learning setting and show that two existing meta-learning algorithms (MAML and Reptile) can be derived from our bounds, thereby bridging the gap between practice and PAC-Bayesian theories. Furthermore, we derive a new computationally-efficient PACMAML algorithm, and show it outperforms existing meta-learning algorithms on several few-shot benchmark datasets.
Neural Stochastic Differential Equations model a dynamical environment with neural nets assigned to their drift and diffusion terms. The high expressive power of their nonlinearity comes at the expense of instability in the identification of the larg e set of free parameters. This paper presents a recipe to improve the prediction accuracy of such models in three steps: i) accounting for epistemic uncertainty by assuming probabilistic weights, ii) incorporation of partial knowledge on the state dynamics, and iii) training the resultant hybrid model by an objective derived from a PAC-Bayesian generalization bound. We observe in our experiments that this recipe effectively translates partial and noisy prior knowledge into an improved model fit.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا