ترغب بنشر مسار تعليمي؟ اضغط هنا

The Nystr{o}m method for elastic wave scattering by unbounded rough surfaces

95   0   0.0 ( 0 )
 نشر من قبل Xiaoli Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the numerical algorithm for the two-dimensional time-harmonic elastic wave scattering by unbounded rough surfaces with Dirichlet boundary condition. A Nystr{o}m method is proposed for the scattering problem based on the integral equation method. Convergence of the Nystr{o}m method is established with convergence rate depending on the smoothness of the rough surfaces. In doing so, a crucial role is played by analyzing the singularities of the kernels of the relevant boundary integral operators. Numerical experiments are presented to demonstrate the effectiveness of the method.



قيم البحث

اقرأ أيضاً

235 - Jun Liu , Shu-Lin Wu 2021
The Sinc-Nystr{o}m method in time is a high-order spectral method for solving evolutionary differential equations and it has wide applications in scientific computation. But in this method we have to solve all the time steps implicitly at one-shot, w hich may results in a large-scale nonsymmetric dense system that is expensive to solve. In this paper, we propose and analyze a parallel-in-time (PinT) preconditioner for solving such Sinc-Nystr{o}m systems, where both the parabolic and hyperbolic PDEs are investigated. Attributed to the special Toeplitz-like structure of the Sinc-Nystr{o}m systems, the proposed PinT preconditioner is indeed a low-rank perturbation of the system matrix and we show that the spectrum of the preconditioned system is highly clustered around one, especially when the time step size is refined. Such a clustered spectrum distribution matches very well with the numerically observed mesh-independent GMRES convergence rates in various examples. Several linear and nonlinear ODE and PDE examples are presented to illustrate the convergence performance of our proposed PinT preconditioners, where the achieved exponential order of accuracy are especially attractive to those applications in need of high accuracy.
78 - Tielei Zhu , Jiaqing Yang 2020
Consider the two-dimensional inverse elastic wave scattering by an infinite rough surface with a Dirichlet boundary condition. A non-interative sampling technique is proposed for detecting the rough surface by taking elastic wave measurements on a bo unded line segment above the surface, based on reconstructing a modified near-field equation associated with a special surface, which generalized our pervious work for the Helmholtz equation (SIAM J. IMAGING. SCI. 10(3)(2017), 1579-1602) to the Navier equation. Several numerical examples are carried out to illustrate the effectiveness of the inversion algorithm.
266 - Tomoaki Okayama 2013
A Sinc-collocation method has been proposed by Stenger, and he also gave theoretical analysis of the method in the case of a `scalar equation. This paper extends the theoretical results to the case of a `system of equations. Furthermore, this paper p roposes more efficient method by replacing the variable transformation employed in Stengers method. The efficiency is confirmed by both of theoretical analysis and numerical experiments. In addition to the existing and newly-proposed Sinc-collocation methods, this paper also gives similar theoretical results for Sinc-Nystr{o}m methods proposed by Nurmuhammad et al. From a viewpoint of the computational cost, it turns out that the newly-proposed Sinc-collocation method is the most efficient among those methods.
This paper is concerned with the time-dependent acoustic-elastic interaction problem associated with a bounded elastic body immersed in a homogeneous air or fluid above an unbounded rough surface. The well-posedness and stability of the problem are f irst established by using the Laplace transform and the energy method. A perfectly matched layer (PML) is then introduced to truncate the interaction problem above a finite layer containing the elastic body, leading to a PML problem in a finite strip domain. We further establish the existence, uniqueness and stability estimate of solutions to the PML problem. Finally, we prove the exponential convergence of the PML problem in terms of the thickness and parameter of the PML layer, based on establishing an error estimate between the DtN operators of the original problem and the PML problem.
119 - H. A. Erbay , S. Erbay , A. Erkip 2019
Numerical approximation of a general class of nonlinear unidirectional wave equations with a convolution-type nonlocality in space is considered. A semi-discrete numerical method based on both a uniform space discretization and the discrete convoluti on operator is introduced to solve the Cauchy problem. The method is proved to be uniformly convergent as the mesh size goes to zero. The order of convergence for the discretization error is linear or quadratic depending on the smoothness of the convolution kernel. The discrete problem defined on the whole spatial domain is then truncated to a finite domain. Restricting the problem to a finite domain introduces a localization error and it is proved that this localization error stays below a given threshold if the finite domain is large enough. For two particular kernel functions, the numerical examples concerning solitary wave solutions illustrate the expected accuracy of the method. Our class of nonlocal wave equations includes the Benjamin-Bona-Mahony equation as a special case and the present work is inspired by the previous work of Bona, Pritchard and Scott on numerical solution of the Benjamin-Bona-Mahony equation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا