ﻻ يوجد ملخص باللغة العربية
Consider the two-dimensional inverse elastic wave scattering by an infinite rough surface with a Dirichlet boundary condition. A non-interative sampling technique is proposed for detecting the rough surface by taking elastic wave measurements on a bounded line segment above the surface, based on reconstructing a modified near-field equation associated with a special surface, which generalized our pervious work for the Helmholtz equation (SIAM J. IMAGING. SCI. 10(3)(2017), 1579-1602) to the Navier equation. Several numerical examples are carried out to illustrate the effectiveness of the inversion algorithm.
We consider the numerical algorithm for the two-dimensional time-harmonic elastic wave scattering by unbounded rough surfaces with Dirichlet boundary condition. A Nystr{o}m method is proposed for the scattering problem based on the integral equation
This paper is concerned with the direct and inverse random source scattering problems for elastic waves where the source is assumed to be driven by an additive white noise. Given the source, the direct problem is to determine the displacement of the
This document takes existing derivations of scattering loss from rough surfaces, and makes them more accessible as a tool to derive the total scattering loss from a rough mirror given its true surface profile. It does not contain any new results and
Inverse scattering problems have many important applications. In this paper, given limited aperture data, we propose a Bayesian method for the inverse acoustic scattering to reconstruct the shape of an obstacle. The inverse problem is formulated as a
In this paper, we consider the direct and inverse problem of scattering of time-harmonic waves by an unbounded rough interface with a buried impenetrable obstacle. We first study the well-posedness of the direct problem with a local source by the var