ﻻ يوجد ملخص باللغة العربية
The Sinc-Nystr{o}m method in time is a high-order spectral method for solving evolutionary differential equations and it has wide applications in scientific computation. But in this method we have to solve all the time steps implicitly at one-shot, which may results in a large-scale nonsymmetric dense system that is expensive to solve. In this paper, we propose and analyze a parallel-in-time (PinT) preconditioner for solving such Sinc-Nystr{o}m systems, where both the parabolic and hyperbolic PDEs are investigated. Attributed to the special Toeplitz-like structure of the Sinc-Nystr{o}m systems, the proposed PinT preconditioner is indeed a low-rank perturbation of the system matrix and we show that the spectrum of the preconditioned system is highly clustered around one, especially when the time step size is refined. Such a clustered spectrum distribution matches very well with the numerically observed mesh-independent GMRES convergence rates in various examples. Several linear and nonlinear ODE and PDE examples are presented to illustrate the convergence performance of our proposed PinT preconditioners, where the achieved exponential order of accuracy are especially attractive to those applications in need of high accuracy.
A Sinc-collocation method has been proposed by Stenger, and he also gave theoretical analysis of the method in the case of a `scalar equation. This paper extends the theoretical results to the case of a `system of equations. Furthermore, this paper p
We consider the numerical algorithm for the two-dimensional time-harmonic elastic wave scattering by unbounded rough surfaces with Dirichlet boundary condition. A Nystr{o}m method is proposed for the scattering problem based on the integral equation
In this paper we study the linear systems arising from discretized poroelasticity problems. We formulate one block preconditioner for the two-filed Biot model and several preconditioners for the classical three-filed Biot model under the unified rela
A Sinc-Nystrom method for Volterra integro-differential equations was developed by Zarebnia in 2010. The method is quite efficient in the sense that exponential convergence can be obtained even if the given problem has endpoint singularity. However,
The Sinc quadrature and the Sinc indefinite integration are approximation formulas for definite integration and indefinite integration, respectively, which can be applied on any interval by using an appropriate variable transformation. Their converge