ﻻ يوجد ملخص باللغة العربية
The functional renormalization group (FRG) approach is a powerful tool for studies of a large variety of systems, ranging from statistical physics over the theory of the strong interaction to gravity. The practical application of this approach relies on the derivation of so-called flow equations, which describe the change of the quantum effective action under the variation of a coarse-graining parameter. In the present work, we discuss in detail a novel approach to solve such flow equations. This approach relies on the fact that RG equations can be rewritten such that they exhibit similarities with the conservation laws of fluid dynamics. This observation can be exploited in different ways. First of all, we show that this allows to employ powerful numerical techniques developed in the context of fluid dynamics to solve RG equations. In particular, it allows to reliably treat the emergence of non-analytic behavior in the RG flow of the effective action as it is expected to occur in studies of, e.g., spontaneous symmetry breaking. Second, the analogy between RG equations and fluid dynamics offers the opportunity to gain novel insights into RG flows and their interpretation in general, including the irreversibility of RG flows. We work out this connection in practice by applying it to zero-dimensional quantum-field theoretical models. The generalization to higher-dimensional models is also discussed. Our findings are expected to help improving future FRG studies of quantum field theories in higher dimensions both on a qualitative and quantitative level.
We demonstrate that the reformulation of renormalization group (RG) flow equations as non-linear heat equations has severe implications on the understanding of RG flows in general. We demonstrate by explicitly constructing an entropy function for a z
We investigate by means of Monte Carlo simulation and Finite-Size Scaling analysis the critical properties of the three dimensional O(5) non linear sigma model and of the antiferromagnetic RP2 model, both of them regularized on a lattice. High accura
A Kallen-Lehman approach to 3D Ising model is analyzed numerically both at low and high temperature. It is shown that, even assuming a minimal duality breaking, one can fix three parameters of the model to get a very good agreement with the MonteCarl
The scaling limit of the spin cluster boundaries of the Ising model with domain wall boundary conditions is SLE with kappa=3. We hypothesise that the three-state Potts model with appropriate boundary conditions has spin cluster boundaries which are a
We study the evolution of an embedded protoplanet in a circumstellar disk using the 3D-Radiation Hydro code TRAMP, and treat the thermodynamics of the gas properly in three dimensions. The primary interest of this work lies in the demonstration and t