ﻻ يوجد ملخص باللغة العربية
We demonstrate that the reformulation of renormalization group (RG) flow equations as non-linear heat equations has severe implications on the understanding of RG flows in general. We demonstrate by explicitly constructing an entropy function for a zero-dimensional $mathbb{Z}_2$-symmetric model that the dissipative character of generic non-linear diffusion equations is also hard-coded in the functional RG equation. This renders RG flows manifestly irreversible, revealing the semi-group property of RG transformations on the level of the flow equation itself. Additionally, we argue that the dissipative character of RG flows, its irreversibility and the entropy production during the RG flow may be linked to the existence of a so-called $mathcal{C}$-/$mathcal{A}$-function. In total, this introduces an asymmetry in the so-called RG time -- in complete analogy to the thermodynamic arrow of time -- and allows for an interpretation of infrared actions as equilibrium solutions of dissipative RG flows equations. The impossibility of resolving microphysics from macrophysics is evident in this framework. Furthermore, we directly link the irreversibility and the entropy production in RG flows to an explicit numerical entropy production, which is manifest in diffusive and non-linear partial differential equations (PDEs) and a standard mathematical tool for the analysis of PDEs. Using exactly solvable zero-dimensional $mathbb{Z}_2$-symmetric models, we explicitly compute the (numerical) entropy production related to the total variation non-increasing property of the PDE during RG flows towards the infrared limit. Finally, we discuss generalizations of our findings and relations to the $mathcal{C}$-/$mathcal{A}$-theorem as well as how our work may help to construct truncations of RG flow equations in the future, including numerically stable schemes for solving the corresponding PDEs.
The functional renormalization group (FRG) approach is a powerful tool for studies of a large variety of systems, ranging from statistical physics over the theory of the strong interaction to gravity. The practical application of this approach relies
We discuss the non-equilibrium properties of a thermally driven micromachine consisting of three spheres which are in equilibrium with independent heat baths characterized by different temperatures. Within the framework of a linear stochastic Langevi
We consider circuit complexity in certain interacting scalar quantum field theories, mainly focusing on the $phi^4$ theory. We work out the circuit complexity for evolving from a nearly Gaussian unentangled reference state to the entangled ground sta
We demonstrate the power of a recently-proposed approximation scheme for the non-perturbative renormalization group that gives access to correlation functions over their full momentum range. We solve numerically the leading-order flow equations obtai
Systems out of equilibrium exhibit a net production of entropy. We study the dynamics of a stochastic system represented by a Master Equation that can be modeled by a Fokker-Planck equation in a coarse-grained, mesoscopic description. We show that th