ﻻ يوجد ملخص باللغة العربية
A Kallen-Lehman approach to 3D Ising model is analyzed numerically both at low and high temperature. It is shown that, even assuming a minimal duality breaking, one can fix three parameters of the model to get a very good agreement with the MonteCarlo results at high temperatures. With the same parameters the agreement is satisfactory both at low and near critical temperatures. How to improve the agreement with MonteCarlo results by introducing a more general duality breaking is shortly discussed.
A phenomenological approach to the ferromagnetic two dimensional Potts model on square lattice is proposed. Our goal is to present a simple functional form that obeys the known properties possessed by the free energy of the q-state Potts model. The d
How can a renormalization group fixed point be scale invariant without being conformal? Polchinski (1988) showed that this may happen if the theory contains a virial current -- a non-conserved vector operator of dimension exactly $(d-1)$, whose diver
We exploit the Kallen-Lehman representation of the two-point Green function to prove that the gluon propagator cannot go to zero in the infrared limit. We are able to derive also the functional form of it. This means that current results on the latti
The N-vector cubic model relevant, among others, to the physics of the randomly dilute Ising model is analyzed in arbitrary dimension by means of an exact renormalization-group equation. This study provides a unified picture of its critical physics b
The ferromagnetic transition in the Ising model is the paradigmatic example of ergodicity breaking accompanied by symmetry breaking. It is routinely assumed that the thermodynamic limit is taken with free or periodic boundary conditions. More exotic