ترغب بنشر مسار تعليمي؟ اضغط هنا

A Janus double sided mid-IR photodetector based on a MIM architecture

105   0   0.0 ( 0 )
 نشر من قبل Mathieu Jeannin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a mid-IR ($lambda approx$ 8.3 $mu$m) quantum well infrared photodetector (QWIP) fabricated on a mid-IR transparent substrate, allowing photodetection with illumination from either the front surface or through the substrate. The device is based on a 400 nm-thick GaAs/AlGaAs semiconductor QWIP heterostructure enclosed in a metal-insulator-metal (MIM) cavity and hosted on a mid-IR transparent ZnSe substrate. Metallic stripes are symmetrically patterned by e-beam lithography on both sides of the active region. The detector spectral coverage spans from $lambda approx 7.15$ $mu$m to $lambda approx 8.7$ $mu$m by changing the stripe width L - from L = 1.0 $mu$m to L = 1.3 $mu$m - thus frequency-tuning the optical cavity mode. Both micro-FTIR passive optical characterizations and photocurrent measurements of the two-port system are carried out. They reveal a similar spectral response for the two detector ports, with an experimentally measured T$_{BLIP}$ of $approx$ 200K.



قيم البحث

اقرأ أيضاً

The detection of light helicity is key to several research and industrial applications from drugs production to optical communications. However, the direct measurement of the light helicity is inherently impossible with conventional photodetectors ba sed on III-V or IV-VI semiconductors, being naturally non-chiral. The prior polarization analysis of the light by a series of often moving optical elements is necessary before light is sent to the detector. A method is here presented to effectively give to the conventional dilute nitride GaAs-based semiconductor epilayer a chiral photoconductivity in paramagnetic-defect-engineered samples. The detection scheme relies on the giant spin-dependent recombination of conduction electrons and the accompanying spin polarization of the engineered defects to control the conduction band population via the electrons spin polarization. As the conduction electron spin polarization is, in turn, intimately linked to the excitation light polarization, the light polarization state can be determined by a simple conductivity measurement. This effectively gives the GaAsN epilayer a chiral photoconductivity capable of discriminating the handedness of an incident excitation light in addition to its intensity. This approach, removing the need of any optical elements in front of a non-chiral detector, could offer easier integration and miniaturisation. This new chiral photodetector could potentially operate in a spectral range from the visible to the infra-red using (In)(Al)GaAsN alloys or ion-implanted nitrogen-free III-V compounds.
A new photonuclear thermal neutron facility has been developed at the Physics Department of University of Torino. The facility is based on a medical electron LINAC coupled to a compact converter and moderator assembly. A homogenous thermal neutron fi eld of the order of 10$^6$ cm$^{-2}$s$^{-1}$ is achievable in the enclosed irradiation cavity with low gamma and fast neutron contaminations. Its intensity can be tuned varying the LINAC current. These characteristics make the source appropriate for several applications like detectors development, material studies and BNCT preclinical research. This work describes the project and the experimental characterization of the facility. This includes the measurement of the thermal neutron fluence rate, the determination of the neutron energy spectrum and of the thermal neutron field uniformity and the evaluation of the gamma contamination.
149 - Peng Bai , Xiaohong Li , Ning Yang 2021
High performance Terahertz (THz) photodetector has drawn wide attention and got great improvement due to its significant application in biomedical, astrophysics, nondestructive inspection, 6th generation communication system as well as national secur ity application. Here we demonstrate a novel broadband photon-type THz/infrared (IR) photodetector based on the GaAs/AlxGa1-xAs ratchet structure. This kind of photodetector realizes a THz photon-response based on the electrically pumped hot hole injection and overcomes the internal workfunction related spectral response limit. An ultrabroadband photoresponse from 4 THz to 300 THz and a peak responsivity of 50.3 mA/W are realized at negative bias voltage of -1 V. The photodetector also presents a bias-tunable photon-response characteristic due to the asymmetric structure. The ratchet structure also induces an evident photocurrent even at zero bias voltage, which indicates the detector can be regard as a broadband photovoltaic-like detector. The rectification characteristic and high temperature operation possibility of the photodetector are also discussed. This work not only demonstrates a novel ultrabroadband THz/IR photodetector, but also provides a new method to study the light-responsive ratchet.
101 - Zhenhai Fu , Xuan She , Nan Li 2018
The rapid loading and manipulation of microspheres in optical trap is important for its applications in optomechanics and precision force sensing. We investigate the microsphere behavior under coaction of a dual-beam fiber-optic trap and a pulse lase r beam, which reveals a launched microsphere can be effectively captured in a spatial region. A suitable order of pulse duration for launch is derived according to the calculated detachment energy threshold of pulse laser. Furthermore, we illustrate the effect of structural parameters on the launching process, including the spot size of pulse laser, the vertical displacement of beam waist and the initial position of microsphere. Our result will be instructive in the optimal design of the pulse-laser-assisted optical tweezers for controllable loading mechanism of optical trap.
The self-powered sensing system could harness ambient energy to power the sensor without the need for external electrical energy. Recently, the concept of photovoltaic (PV) self-powered gas sensing has aroused wider attentions due to room-temperature operation, low power consumption, small size and potential applications. The PV self-powered gas sensors integrate the photovoltaic effects and the gas sensing function into a single chip, which could truly achieve the goal of zero power consumption for an independent gas sensing device. As an emerging concept, the PV self-powered gas sensing has been achieved by using different strategies, including integrated gas sensor and solar cell, integrated light filter and solar cell, gas-sensitive heterojunction photovoltaics, and gas-sensitive lateral photovoltaics, respectively. The purpose of this review is to summarize recent advances of PV self-powered gas sensing and also remark on the directions for future research in this topic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا