ترغب بنشر مسار تعليمي؟ اضغط هنا

Chiral photodetector based on GaAsN

210   0   0.0 ( 0 )
 نشر من قبل Andrea Balocchi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The detection of light helicity is key to several research and industrial applications from drugs production to optical communications. However, the direct measurement of the light helicity is inherently impossible with conventional photodetectors based on III-V or IV-VI semiconductors, being naturally non-chiral. The prior polarization analysis of the light by a series of often moving optical elements is necessary before light is sent to the detector. A method is here presented to effectively give to the conventional dilute nitride GaAs-based semiconductor epilayer a chiral photoconductivity in paramagnetic-defect-engineered samples. The detection scheme relies on the giant spin-dependent recombination of conduction electrons and the accompanying spin polarization of the engineered defects to control the conduction band population via the electrons spin polarization. As the conduction electron spin polarization is, in turn, intimately linked to the excitation light polarization, the light polarization state can be determined by a simple conductivity measurement. This effectively gives the GaAsN epilayer a chiral photoconductivity capable of discriminating the handedness of an incident excitation light in addition to its intensity. This approach, removing the need of any optical elements in front of a non-chiral detector, could offer easier integration and miniaturisation. This new chiral photodetector could potentially operate in a spectral range from the visible to the infra-red using (In)(Al)GaAsN alloys or ion-implanted nitrogen-free III-V compounds.

قيم البحث

اقرأ أيضاً

We present a graphene photodetector for telecom applications based on a silicon photonic crystal defect waveguide. The photonic structure is used to confine the propagating light in a narrow region in the graphene layer to enhance light-matter intera ction. Additionally, it is utilized as split-gate electrode to create a pn-junction in the vicinity of the optical absorption region. The photonic crystal defect waveguide allows for optimal photo-thermoelectric conversion of the occurring temperature profile in graphene into a photovoltage due to additional silicon slabs on both sides of the waveguide, enhancing the device response as compared to a conventional slot waveguide design. A photoresponsivity of 4.7 V/W and a (setup-limited) electrical bandwidth of 18 GHz are achieved. Under a moderate bias of 0.4 V we obtain a photoconductive responsivity of 0.17 A/W.
We present a mid-IR ($lambda approx$ 8.3 $mu$m) quantum well infrared photodetector (QWIP) fabricated on a mid-IR transparent substrate, allowing photodetection with illumination from either the front surface or through the substrate. The device is b ased on a 400 nm-thick GaAs/AlGaAs semiconductor QWIP heterostructure enclosed in a metal-insulator-metal (MIM) cavity and hosted on a mid-IR transparent ZnSe substrate. Metallic stripes are symmetrically patterned by e-beam lithography on both sides of the active region. The detector spectral coverage spans from $lambda approx 7.15$ $mu$m to $lambda approx 8.7$ $mu$m by changing the stripe width L - from L = 1.0 $mu$m to L = 1.3 $mu$m - thus frequency-tuning the optical cavity mode. Both micro-FTIR passive optical characterizations and photocurrent measurements of the two-port system are carried out. They reveal a similar spectral response for the two detector ports, with an experimentally measured T$_{BLIP}$ of $approx$ 200K.
Si-based photodetectors satisfy the criteria of low-cost and environmental-friendly, and can enable the development of on-chip complementary metal-oxide-semiconductor (CMOS)-compatible photonic systems. However, extending their room-temperature photo response into the mid-wavelength infrared (MWIR) regime remains challenging due to the intrinsic bandgap of Si. Here, we report on a comprehensive study of a room-temperature MWIR photodetector based on Si hyperdoped with Te. The demonstrated MWIR p-n photodiode exhibits a spectral photoresponse up to 5 {mu}m and a slightly lower detector performance than the commercial devices in the wavelength range of 1.0-1.9 {mu}m. We also investigate the correlation between the background noise and the sensitivity of the Te-hyperdoped Si photodiode, where the maximum room-temperature specific detectivity is found to be 3.2 x 10^12 cmHz^{1/2}W^{-1} and 9.2 x 10^8 cmHz^{1/2}W^{-1} at 1 {mu}m and 1.55 {mu}m, respectively. This work contributes to pave the way towards establishing a Si-based broadband infrared photonic system operating at room temperature.
We propose and numerically simulate an optoelectronic compact circular polarimeter. It allows to electrically measure the degree of circular polarization and light intensity at room temperature for a wide range of incidence angles in a single shot. T he device, being based on GaAsN, is easy to integrate into standard electronics and does not require bulky movable parts nor extra detectors. Its operation hinges mainly on two phenomena: the spin dependent capture of electrons and the hyperfine interaction between bound electrons and nuclei on Ga$^{2+}$ paramagnetic centers in GaAsN. The first phenomenon confers the device with sensitivity to the degree of circular polarization and the latter allows to discriminate the handedness of the incident light.
The unique properties and atomic thickness of two-dimensional (2D) materials enable smaller and better nanoelectromechanical sensors with novel functionalities. During the last decade, many studies have successfully shown the feasibility of using sus pended membranes of 2D materials in pressure sensors, microphones, accelerometers, and mass and gas sensors. In this review, we explain the different sensing concepts and give an overview of the relevant material properties, fabrication routes, and device operation principles. Finally, we discuss sensor readout and integration methods and provide comparisons against the state of the art to show both the challenges and promises of 2D material-based nanoelectromechanical sensing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا