ﻻ يوجد ملخص باللغة العربية
Coronary angiography is the gold standard for the diagnosis of coronary heart disease. At present, the methods for detecting coronary artery stenoses and evaluating the degree of it in coronary angiograms are either subjective or not efficient enough. Two vascular stenoses detection methods in coronary angiograms are proposed to assist the diagnosis. The first one is an automatic method, which can automatically segment the entire coronary vessels and mark the stenoses. The second one is an interactive method. With this method, the user only needs to give a start point and an end point to detect the stenoses of a certain vascular segment. We have shown that the proposed tracking methods are robust for angiograms with various vessel structure. The automatic detection method can effectively measure the diameter of the vessel and mark the stenoses in different angiograms. Further investigation proves that the results of interactive detection method can accurately reflect the true stenoses situation. The proposed automatic method and interactive method are effective in various angiograms and can complement each other in clinical practice. The first method can be used for preliminary screening and the second method can be used for further quantitative analysis. It has the potential to improve the level of clinical diagnosis of coronary heart disease.
In stable coronary artery disease (CAD), reduction in mortality and/or myocardial infarction with revascularization over medical therapy has not been reliably achieved. Coronary arteries are usually extracted to perform stenosis detection. We aim to
Coronary artery disease (CAD) has posed a leading threat to the lives of cardiovascular disease patients worldwide for a long time. Therefore, automated diagnosis of CAD has indispensable significance in clinical medicine. However, the complexity of
The reconstruction of three-dimensional models of coronary arteries is of great significance for the localization, evaluation and diagnosis of stenosis and plaque in the arteries, as well as for the assisted navigation of interventional surgery. In t
Coronary heart disease (CHD) is the leading cause of adult death in the United States and worldwide, and for which the coronary angiography procedure is the primary gateway for diagnosis and clinical management decisions. The standard-of-care for int
The quantification of the coronary artery stenosis is of significant clinical importance in coronary artery disease diagnosis and intervention treatment. It aims to quantify the morphological indices of the coronary artery lesions such as minimum lum