ترغب بنشر مسار تعليمي؟ اضغط هنا

Transformer Network for Significant Stenosis Detection in CCTA of Coronary Arteries

92   0   0.0 ( 0 )
 نشر من قبل Xinghua Ma
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Coronary artery disease (CAD) has posed a leading threat to the lives of cardiovascular disease patients worldwide for a long time. Therefore, automated diagnosis of CAD has indispensable significance in clinical medicine. However, the complexity of coronary artery plaques that cause CAD makes the automatic detection of coronary artery stenosis in Coronary CT angiography (CCTA) a difficult task. In this paper, we propose a Transformer network (TR-Net) for the automatic detection of significant stenosis (i.e. luminal narrowing > 50%) while practically completing the computer-assisted diagnosis of CAD. The proposed TR-Net introduces a novel Transformer, and tightly combines convolutional layers and Transformer encoders, allowing their advantages to be demonstrated in the task. By analyzing semantic information sequences, TR-Net can fully understand the relationship between image information in each position of a multiplanar reformatted (MPR) image, and accurately detect significant stenosis based on both local and global information. We evaluate our TR-Net on a dataset of 76 patients from different patients annotated by experienced radiologists. Experimental results illustrate that our TR-Net has achieved better results in ACC (0.92), Spec (0.96), PPV (0.84), F1 (0.79) and MCC (0.74) indicators compared with the state-of-the-art methods. The source code is publicly available from the link (https://github.com/XinghuaMa/TR-Net).



قيم البحث

اقرأ أيضاً

In stable coronary artery disease (CAD), reduction in mortality and/or myocardial infarction with revascularization over medical therapy has not been reliably achieved. Coronary arteries are usually extracted to perform stenosis detection. We aim to develop an automatic algorithm by deep learning to extract coronary arteries from ICAs.In this study, a multi-input and multi-scale (MIMS) U-Net with a two-stage recurrent training strategy was proposed for the automatic vessel segmentation. Incorporating features such as the Inception residual module with depth-wise separable convolutional layers, the proposed model generated a refined prediction map with the following two training stages: (i) Stage I coarsely segmented the major coronary arteries from pre-processed single-channel ICAs and generated the probability map of vessels; (ii) during the Stage II, a three-channel image consisting of the original preprocessed image, a generated probability map, and an edge-enhanced image generated from the preprocessed image was fed to the proposed MIMS U-Net to produce the final segmentation probability map. During the training stage, the probability maps were iteratively and recurrently updated by feeding into the neural network. After segmentation, an arterial stenosis detection algorithm was developed to extract vascular centerlines and calculate arterial diameters to evaluate stenotic level. Experimental results demonstrated that the proposed method achieved an average Dice score of 0.8329, an average sensitivity of 0.8281, and an average specificity of 0.9979 in our dataset with 294 ICAs obtained from 73 patient. Moreover, our stenosis detection algorithm achieved a true positive rate of 0.6668 and a positive predictive value of 0.7043.
The quantification of the coronary artery stenosis is of significant clinical importance in coronary artery disease diagnosis and intervention treatment. It aims to quantify the morphological indices of the coronary artery lesions such as minimum lum en diameter, reference vessel diameter, lesion length, and these indices are the reference of the interventional stent placement. In this study, we propose a direct multiview quantitative coronary angiography (DMQCA) model as an automatic clinical tool to quantify the coronary artery stenosis from X-ray coronary angiography images. The proposed DMQCA model consists of a multiview module with two attention mechanisms, a key-frame module, and a regression module, to achieve direct accurate multiple-index estimation. The multi-view module comprehensively learns the Spatio-temporal features of coronary arteries through a three-dimensional convolution. The attention mechanisms of each view focus on the subtle feature of the lesion region and capture the important context information. The key-frame module learns the subtle features of the stenosis through successive dilated residual blocks. The regression module finally generates the indices estimation from multiple features.
Coronary angiography is the gold standard for the diagnosis of coronary heart disease. At present, the methods for detecting coronary artery stenoses and evaluating the degree of it in coronary angiograms are either subjective or not efficient enough . Two vascular stenoses detection methods in coronary angiograms are proposed to assist the diagnosis. The first one is an automatic method, which can automatically segment the entire coronary vessels and mark the stenoses. The second one is an interactive method. With this method, the user only needs to give a start point and an end point to detect the stenoses of a certain vascular segment. We have shown that the proposed tracking methods are robust for angiograms with various vessel structure. The automatic detection method can effectively measure the diameter of the vessel and mark the stenoses in different angiograms. Further investigation proves that the results of interactive detection method can accurately reflect the true stenoses situation. The proposed automatic method and interactive method are effective in various angiograms and can complement each other in clinical practice. The first method can be used for preliminary screening and the second method can be used for further quantitative analysis. It has the potential to improve the level of clinical diagnosis of coronary heart disease.
The core problem of Magnetic Resonance Imaging (MRI) is the trade off between acceleration and image quality. Image reconstruction and super-resolution are two crucial techniques in Magnetic Resonance Imaging (MRI). Current methods are designed to pe rform these tasks separately, ignoring the correlations between them. In this work, we propose an end-to-end task transformer network (T$^2$Net) for joint MRI reconstruction and super-resolution, which allows representations and feature transmission to be shared between multiple task to achieve higher-quality, super-resolved and motion-artifacts-free images from highly undersampled and degenerated MRI data. Our framework combines both reconstruction and super-resolution, divided into two sub-branches, whose features are expressed as queries and keys. Specifically, we encourage joint feature learning between the two tasks, thereby transferring accurate task information. We first use two separate CNN branches to extract task-specific features. Then, a task transformer module is designed to embed and synthesize the relevance between the two tasks. Experimental results show that our multi-task model significantly outperforms advanced sequential methods, both quantitatively and qualitatively.
The rapid and seemingly endless expansion of COVID-19 can be traced back to the inefficiency and shortage of testing kits that offer accurate results in a timely manner. An emerging popular technique, which adopts improvements made in mobile ultrasou nd technology, allows for healthcare professionals to conduct rapid screenings on a large scale. We present an image-based solution that aims at automating the testing process which allows for rapid mass testing to be conducted with or without a trained medical professional that can be applied to rural environments and third world countries. Our contributions towards rapid large-scale testing include a novel deep learning architecture capable of analyzing ultrasound data that can run in real-time and significantly improve the current state-of-the-art detection accuracies using image-based COVID-19 detection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا