ﻻ يوجد ملخص باللغة العربية
The reconstruction of three-dimensional models of coronary arteries is of great significance for the localization, evaluation and diagnosis of stenosis and plaque in the arteries, as well as for the assisted navigation of interventional surgery. In the clinical practice, physicians use a few angles of coronary angiography to capture arterial images, so it is of great practical value to perform 3D reconstruction directly from coronary angiography images. However, this is a very difficult computer vision task due to the complex shape of coronary blood vessels, as well as the lack of data set and key point labeling. With the rise of deep learning, more and more work is being done to reconstruct 3D models of human organs from medical images using deep neural networks. We propose an adversarial and generative way to reconstruct three dimensional coronary artery models, from two different views of angiographic images of coronary arteries. With 3D fully supervised learning and 2D weakly supervised learning schemes, we obtained reconstruction accuracies that outperform state-of-art techniques.
Coronary angiography is an indispensable assistive technique for cardiac interventional surgery. Segmentation and extraction of blood vessels from coronary angiography videos are very essential prerequisites for physicians to locate, assess and diagn
The segmentation of coronary arteries by convolutional neural network is promising yet requires a large amount of labor-intensive manual annotations. Transferring knowledge from retinal vessels in widely-available public labeled fundus images (FIs) h
The quantification of the coronary artery stenosis is of significant clinical importance in coronary artery disease diagnosis and intervention treatment. It aims to quantify the morphological indices of the coronary artery lesions such as minimum lum
Renal compartment segmentation on CT images targets on extracting the 3D structure of renal compartments from abdominal CTA images and is of great significance to the diagnosis and treatment for kidney diseases. However, due to the unclear compartmen
With the development of medical computer-aided diagnostic systems, pulmonary artery-vein(A/V) separation plays a crucial role in assisting doctors in preoperative planning for lung cancer surgery. However, distinguishing arterial from venous irrigati