ترغب بنشر مسار تعليمي؟ اضغط هنا

A heat flow for the mean field equation on a finite graph

114   0   0.0 ( 0 )
 نشر من قبل Yunyan Yang
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Inspired by works of Casteras (Pacific J. Math., 2015), Li-Zhu (Calc. Var., 2019) and Sun-Zhu (Calc. Var., 2020), we propose a heat flow for the mean field equation on a connected finite graph $G=(V,E)$. Namely $$ left{begin{array}{lll} partial_tphi(u)=Delta u-Q+rho frac{e^u}{int_Ve^udmu}[1.5ex] u(cdot,0)=u_0, end{array}right. $$ where $Delta$ is the standard graph Laplacian, $rho$ is a real number, $Q:Vrightarrowmathbb{R}$ is a function satisfying $int_VQdmu=rho$, and $phi:mathbb{R}rightarrowmathbb{R}$ is one of certain smooth functions including $phi(s)=e^s$. We prove that for any initial data $u_0$ and any $rhoinmathbb{R}$, there exists a unique solution $u:Vtimes[0,+infty)rightarrowmathbb{R}$ of the above heat flow; moreover, $u(x,t)$ converges to some function $u_infty:Vrightarrowmathbb{R}$ uniformly in $xin V$ as $trightarrow+infty$, and $u_infty$ is a solution of the mean field equation $$Delta u_infty-Q+rhofrac{e^{u_infty}}{int_Ve^{u_infty}dmu}=0.$$ Though $G$ is a finite graph, this result is still unexpected, even in the special case $Qequiv 0$. Our approach reads as follows: the short time existence of the heat flow follows from the ODE theory; various integral estimates give its long time existence; moreover we establish a Lojasiewicz-Simon type inequality and use it to conclude the convergence of the heat flow.

قيم البحث

اقرأ أيضاً

In this note, we study symmetry of solutions of the elliptic equation begin{equation*} -Delta _{mathbb{S}^{2}}u+3=e^{2u} hbox{on} mathbb{S}^{2}, end{equation*} that arises in the study of rigidity problem of Hawking mass in general relativity. We p rovide various conditions under which this equation has only constant solutions, and consequently imply the rigidity of Hawking mass for stable constant mean curvature (CMC) sphere.
Let $Sigma$ be a closed Riemann surface, $h$ a positive smooth function on $Sigma$, $rho$ and $alpha$ real numbers. In this paper, we study a generalized mean field equation begin{align*} -Delta u=rholeft(dfrac{he^u}{int_Sigma he^u}-dfrac{1}{mathrm {Area}left(Sigmaright)}right)+alphaleft(u-fint_{Sigma}uright), end{align*} where $Delta$ denotes the Laplace-Beltrami operator. We first derive a uniform bound for solutions when $rhoin (8kpi, 8(k+1)pi)$ for some non-negative integer number $kin mathbb{N}$ and $alpha otinmathrm{Spec}left(-Deltaright)setminusset{0}$. Then we obtain existence results for $alpha<lambda_1left(Sigmaright)$ by using the Leray-Schauder degree theory and the minimax method, where $lambda_1left(Sigmaright)$ is the first positive eigenvalue for $-Delta$.
We consider the two-dimensional mean field equation of the equilibrium turbulence with variable intensities and Dirichlet boundary condition on a pierced domain $$left{ begin{array}{ll} -Delta u=lambda_1dfrac{V_1 e^{u}}{ int_{Omega_{boldsymbolepsilon }} V_1 e^{u} dx } - lambda_2tau dfrac{ V_2 e^{-tau u}}{ int_{Omega_{boldsymbolepsilon}}V_2 e^{ - tau u} dx}&text{in $Omega_{boldsymbolepsilon}=Omegasetminus displaystyle bigcup_{i=1}^m overline{B(xi_i,epsilon_i)}$} u=0 &text{on $partial Omega_{boldsymbolepsilon}$}, end{array} right. $$ where $B(xi_i,epsilon_i)$ is a ball centered at $xi_iinOmega$ with radius $epsilon_i$, $tau$ is a positive parameter and $V_1,V_2>0$ are smooth potentials. When $lambda_1>8pi m_1$ and $lambda_2 tau^2>8pi (m-m_1)$ with $m_1 in {0,1,dots,m}$, there exist radii $epsilon_1,dots,epsilon_m$ small enough such that the problem has a solution which blows-up positively and negatively at the points $xi_1,dots,xi_{m_1}$ and $xi_{m_1+1},dots,xi_{m}$, respectively, as the radii approach zero.
We give a short and self-contained proof for rates of convergence of the Allen-Cahn equation towards mean curvature flow, assuming that a classical (smooth) solution to the latter exists and starting from well-prepared initial data. Our approach is b ased on a relative entropy technique. In particular, it does not require a stability analysis for the linearized Allen-Cahn operator. As our analysis also does not rely on the comparison principle, we expect it to be applicable to more complex equations and systems.
In this paper we analyze a nonlinear parabolic equation characterized by a singular diffusion term describing very fast diffusion effects. The equation is settled in a smooth bounded three-dimensional domain and complemented with a general boundary c ondition of dynamic type. This type of condition prescribes some kind of mass conservation; hence extinction effects are not expected for solutions that emanate from strictly positive initial data. Our main results regard existence of weak solutions, instantaneous regularization properties, long-time behavior, and, under special conditions, uniqueness.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا