ﻻ يوجد ملخص باللغة العربية
We give a short and self-contained proof for rates of convergence of the Allen-Cahn equation towards mean curvature flow, assuming that a classical (smooth) solution to the latter exists and starting from well-prepared initial data. Our approach is based on a relative entropy technique. In particular, it does not require a stability analysis for the linearized Allen-Cahn operator. As our analysis also does not rely on the comparison principle, we expect it to be applicable to more complex equations and systems.
We present a convergence result for solutions of the vector-valued Allen-Cahn Equation. In the spirit of the work of Luckhaus and Sturzenhecker we establish convergence towards a distributional formulation of multi-phase mean-curvature flow using set
This paper is concerned with a fully nonlinear variant of the Allen-Cahn equation with strong irreversibility, where each solution is constrained to be non-decreasing in time. Main purposes of the paper are to prove the well-posedness, smoothing effe
We consider a system of stochastic Allen-Cahn equations on a finite network represented by a finite graph. On each edge in the graph a multiplicative Gaussian noise driven stochastic Allen-Cahn equation is given with possibly different potential barr
In this paper we prove the uniqueness of the saddle-shaped solution to the semilinear nonlocal elliptic equation $(-Delta)^gamma u = f(u)$ in $mathbb R^{2m}$, where $gamma in (0,1)$ and $f$ is of Allen-Cahn type. Moreover, we prove that this solution
This article is mainly devoted to the asymptotic analysis of a fractional version of the (elliptic) Allen-Cahn equation in a bounded domain $Omegasubsetmathbb{R}^n$, with or without a source term in the right hand side of the equation (commonly calle