ترغب بنشر مسار تعليمي؟ اضغط هنا

Time analyticity for fractional heat equations

84   0   0.0 ( 0 )
 نشر من قبل Chulan Zeng
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we investigate pointwise time analyticity of solutions to fractional heat equations in the settings of $mathbb{R}^d$ and a complete Riemannian manifold $mathrm{M}$. On one hand, in $mathbb{R}^d$, we prove that any solution $u=u(t,x)$ to $u_t(t,x)-mathrm{L}_alpha^{kappa} u(t,x)=0$, where $mathrm{L}_alpha^{kappa}$ is a nonlocal operator of order $alpha$, is time analytic in $(0,1]$ if $u$ satisfies the growth condition $|u(t,x)|leq C(1+|x|)^{alpha-epsilon}$ for any $(t,x)in (0,1]times mathbb{R}^d$ and $epsilonin(0,alpha)$. We also obtain pointwise estimates for $partial_t^kp_alpha(t,x;y)$, where $p_alpha(t,x;y)$ is the fractional heat kernel. Furthermore, under the same growth condition, we show that the mild solution is the unique solution. On the other hand, in a manifold $mathrm{M}$, we also prove the time analyticity of the mild solution under the same growth condition and the time analyticity of the fractional heat kernel, when $mathrm{M}$ satisfies the Poincare inequality and the volume doubling condition. Moreover, we also study the time and space derivatives of the fractional heat kernel in $mathbb{R}^d$ using the method of Fourier transform and contour integrals. We find that when $alphain (0,1]$, the fractional heat kernel is time analytic at $t=0$ when $x eq 0$, which differs from the standard heat kernel. As corollaries, we obtain sharp solvability condition for the backward fractional heat equation and time analyticity of some nonlinear fractional heat equations with power nonlinearity of order $p$. These results are related to those in [8] and [11] which deal with local equations.



قيم البحث

اقرأ أيضاً

92 - Hongjie Dong , Doyoon Kim 2018
We establish the $L_p$-solvability for time fractional parabolic equations when coefficients are merely measurable in the time variable. In the spatial variables, the leading coefficients locally have small mean oscillations. Our results extend a recent result in [6] to a large extent.
123 - Hongjie Dong , Doyoon Kim 2021
We consider time fractional parabolic equations in both divergence and non-divergence form when the leading coefficients $a^{ij}$ are measurable functions of $(t,x_1)$ except for $a^{11}$ which is a measurable function of either $t$ or $x_1$. We obta in the solvability in Sobolev spaces of the equations in the whole space, on a half space, or on a partially bounded domain. The proofs use a level set argument, a scaling argument, and embeddings in fractional parabolic Sobolev spaces for which we give a direct and elementary proof.
336 - Remi Carles 2008
We present a general algorithm to show that a scattering operator associated to a semilinear dispersive equation is real analytic, and to compute the coefficients of its Taylor series at any point. We illustrate this method in the case of the Schrodi nger equation with power-like nonlinearity or with Hartree type nonlinearity, and in the case of the wave and Klein-Gordon equations with power nonlinearity. Finally, we discuss the link of this approach with inverse scattering, and with complete integrability.
Given $(M,g)$, a compact connected Riemannian manifold of dimension $d geq 2$, with boundary $partial M$, we consider an initial boundary value problem for a fractional diffusion equation on $(0,T) times M$, $T>0$, with time-fractional Caputo derivat ive of order $alpha in (0,1) cup (1,2)$. We prove uniqueness in the inverse problem of determining the smooth manifold $(M,g)$ (up to an isometry), and various time-independent smooth coefficients appearing in this equation, from measurements of the solution on a subset of $partial M$ at fixed time. In the flat case where $M$ is a compact subset of $mathbb R^d$, two out the three coefficients $rho$ (weight), $a$ (conductivity) and $q$ (potential) appearing in the equation $rho partial_t^alpha u-textrm{div}(a abla u)+ q u=0$ on $(0,T)times Omega$ are recovered simultaneously.
We examine initial-boundary value problems for diffusion equations with distributed order time-fractional derivatives. We prove existence and uniqueness results for the weak solution to these systems, together with its continuous dependency on initia l value and source term. Moreover, under suitable assumption on the source term, we establish that the solution is analytic in time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا