ﻻ يوجد ملخص باللغة العربية
Given $(M,g)$, a compact connected Riemannian manifold of dimension $d geq 2$, with boundary $partial M$, we consider an initial boundary value problem for a fractional diffusion equation on $(0,T) times M$, $T>0$, with time-fractional Caputo derivative of order $alpha in (0,1) cup (1,2)$. We prove uniqueness in the inverse problem of determining the smooth manifold $(M,g)$ (up to an isometry), and various time-independent smooth coefficients appearing in this equation, from measurements of the solution on a subset of $partial M$ at fixed time. In the flat case where $M$ is a compact subset of $mathbb R^d$, two out the three coefficients $rho$ (weight), $a$ (conductivity) and $q$ (potential) appearing in the equation $rho partial_t^alpha u-textrm{div}(a abla u)+ q u=0$ on $(0,T)times Omega$ are recovered simultaneously.
In this paper, we discuss the uniqueness for solution to time-fractional diffusion equation $partial_t^alpha (u-u_0) + Au=0$ with the homogeneous Dirichlet boundary condition, where an elliptic operator $-A$ is not necessarily symmetric. We prove tha
This paper is concerned with the inverse problem on determining an orbit of the moving source in a fractional diffusion(-wave) equations in a connected bounded domain of $mathbb R^d$ or in the whole space $mathbb R^d$. Based on a newly established fr
We examine initial-boundary value problems for diffusion equations with distributed order time-fractional derivatives. We prove existence and uniqueness results for the weak solution to these systems, together with its continuous dependency on initia
This article is concerned with two inverse problems on determining moving source profile functions in evolution equations with a derivative order $alphain(0,2]$ in time. In the first problem, the sources are supposed to move along known straight line
In this paper we prove uniqueness for an inverse boundary value problem (IBVP) arising in electrodynamics. We assume that the electromagnetic properties of the medium, namely the magnetic permeability, the electric permittivity and the conductivity,