ترغب بنشر مسار تعليمي؟ اضغط هنا

Time fractional parabolic equations with measurable coefficients and embeddings for fractional parabolic Sobolev spaces

124   0   0.0 ( 0 )
 نشر من قبل Doyoon Kim
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider time fractional parabolic equations in both divergence and non-divergence form when the leading coefficients $a^{ij}$ are measurable functions of $(t,x_1)$ except for $a^{11}$ which is a measurable function of either $t$ or $x_1$. We obtain the solvability in Sobolev spaces of the equations in the whole space, on a half space, or on a partially bounded domain. The proofs use a level set argument, a scaling argument, and embeddings in fractional parabolic Sobolev spaces for which we give a direct and elementary proof.



قيم البحث

اقرأ أيضاً

92 - Hongjie Dong , Doyoon Kim 2018
We establish the $L_p$-solvability for time fractional parabolic equations when coefficients are merely measurable in the time variable. In the spatial variables, the leading coefficients locally have small mean oscillations. Our results extend a recent result in [6] to a large extent.
226 - Hongjie Dong , Doyoon Kim 2014
We consider both divergence and non-divergence parabolic equations on a half space in weighted Sobolev spaces. All the leading coefficients are assumed to be only measurable in the time and one spatial variable except one coefficient, which is assume d to be only measurable either in the time or the spatial variable. As functions of the other variables the coefficients have small bounded mean oscillation (BMO) semi-norms. The lower-order coefficients are allowed to blow up near the boundary with a certain optimal growth condition. As a corollary, we also obtain the corresponding results for elliptic equations.
142 - Hongjie Dong , Doyoon Kim 2019
In this paper, we establish $L_p$ estimates and solvability for time fractional divergence form parabolic equations in the whole space when leading coefficients are merely measurable in one spatial variable and locally have small mean oscillations wi th respect to the other variables. The corresponding results for equations on a half space are also derived.
200 - Hongjie Dong , Yanze Liu 2021
We obtain $L_p$ estimates for fractional parabolic equations with space-time non-local operators $$ partial_t^alpha u - Lu= f quad mathrm{in} quad (0,T) times mathbb{R}^d,$$ where $partial_t^alpha u$ is the Caputo fractional derivative of order $alph a in (0,1]$, $Tin (0,infty)$, and $$Lu(t,x) := int_{ mathbb{R}^d} bigg( u(t,x+y)-u(t,x) - ycdot abla_xu(t,x)chi^{(sigma)}(y)bigg)K(t,x,y),dy $$ is an integro-differential operator in the spatial variables. Here we do not impose any regularity assumption on the kernel $K$ with respect to $t$ and $y$. We also derive a weighted mixed-norm estimate for the equations with operators that are local in time, i.e., $alpha = 1$, which extend the previous results by using a quite different method.
141 - Wenxiong Chen , Leyun Wu 2021
In this paper, we establish several Liouville type theorems for entire solutions to fractional parabolic equations. We first obtain the key ingredients needed in the proof of Liouville theorems, such as narrow region principles and maximum principles for antisymmetric functions in unbounded domains, in which we remarkably weaken the usual decay condition $u to 0$ at infinity with respect to the spacial variables to a polynomial growth on $u$ by constructing auxiliary functions.Then we derive monotonicity for the solutions in a half space $mathbb{R}_+^n times mathbb{R}$ and obtain some new connections between the nonexistence of solutions in a half space $mathbb{R}_+^n times mathbb{R}$ and in the whole space $mathbb{R}^{n-1} times mathbb{R}$ and therefore prove the corresponding Liouville type theorems. To overcome the difficulty caused by the non-locality of the fractional Laplacian, we introduce several new ideas which will become useful tools in investigating qualitative properties of solutions for a variety of non-local parabolic problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا