ﻻ يوجد ملخص باللغة العربية
Nonlinear inter-modality registration is often challenging due to the lack of objective functions that are good proxies for alignment. Here we propose a synthesis-by-registration method to convert this problem into an easier intra-modality task. We introduce a registration loss for weakly supervised image translation between domains that does not require perfectly aligned training data. This loss capitalises on a registration U-Net with frozen weights, to drive a synthesis CNN towards the desired translation. We complement this loss with a structure preserving constraint based on contrastive learning, which prevents blurring and content shifts due to overfitting. We apply this method to the registration of histological sections to MRI slices, a key step in 3D histology reconstruction. Results on two different public datasets show improvements over registration based on mutual information (13% reduction in landmark error) and synthesis-based algorithms such as CycleGAN (11% reduction), and are comparable to a registration CNN with label supervision.
Learning robust representations to discriminate cell phenotypes based on microscopy images is important for drug discovery. Drug development efforts typically analyse thousands of cell images to screen for potential treatments. Early works focus on c
Acute aortic syndrome (AAS) is a group of life threatening conditions of the aorta. We have developed an end-to-end automatic approach to detect AAS in computed tomography (CT) images. Our approach consists of two steps. At first, we extract N cross
We introduce a learning strategy for contrast-invariant image registration without requiring imaging data. While classical registration methods accurately estimate the spatial correspondence between images, they solve a costly optimization problem fo
A label-efficient paradigm in computer vision is based on self-supervised contrastive pre-training on unlabeled data followed by fine-tuning with a small number of labels. Making practical use of a federated computing environment in the clinical doma
A good clustering algorithm can discover natural groupings in data. These groupings, if used wisely, provide a form of weak supervision for learning representations. In this work, we present Clustering-based Contrastive Learning (CCL), a new clusteri