ترغب بنشر مسار تعليمي؟ اضغط هنا

Federated Contrastive Learning for Decentralized Unlabeled Medical Images

83   0   0.0 ( 0 )
 نشر من قبل Nanqing Dong
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A label-efficient paradigm in computer vision is based on self-supervised contrastive pre-training on unlabeled data followed by fine-tuning with a small number of labels. Making practical use of a federated computing environment in the clinical domain and learning on medical images poses specific challenges. In this work, we propose FedMoCo, a robust federated contrastive learning (FCL) framework, which makes efficient use of decentralized unlabeled medical data. FedMoCo has two novel modules: metadata transfer, an inter-node statistical data augmentation module, and self-adaptive aggregation, an aggregation module based on representational similarity analysis. To the best of our knowledge, this is the first FCL work on medical images. Our experiments show that FedMoCo can consistently outperform FedAvg, a seminal federated learning framework, in extracting meaningful representations for downstream tasks. We further show that FedMoCo can substantially reduce the amount of labeled data required in a downstream task, such as COVID-19 detection, to achieve a reasonable performance.



قيم البحث

اقرأ أيضاً

Active Learning methods create an optimized labeled training set from unlabeled data. We introduce a novel Online Active Deep Learning method for Medical Image Analysis. We extend our MedAL active learning framework to present new results in this pap er. Our novel sampling method queries the unlabeled examples that maximize the average distance to all training set examples. Our online method enhances performance of its underlying baseline deep network. These novelties contribute significant performance improvements, including improving the models underlying deep network accuracy by 6.30%, using only 25% of the labeled dataset to achieve baseline accuracy, reducing backpropagated images during training by as much as 67%, and demonstrating robustness to class imbalance in binary and multi-class tasks.
Contrastive learning (CL) is effective in learning data representations without label supervision, where the encoder needs to contrast each positive sample over multiple negative samples via a one-vs-many softmax cross-entropy loss. However, conventi onal CL is sensitive to how many negative samples are included and how they are selected. Proposed in this paper is a doubly CL strategy that contrasts positive samples and negative ones within themselves separately. We realize this strategy with contrastive attraction and contrastive repulsion (CACR) makes the query not only exert a greater force to attract more distant positive samples but also do so to repel closer negative samples. Theoretical analysis reveals the connection between CACR and CL from the perspectives of both positive attraction and negative repulsion and shows the benefits in both efficiency and robustness brought by separately contrasting within the sampled positive and negative pairs. Extensive large-scale experiments on standard vision tasks show that CACR not only consistently outperforms existing CL methods on benchmark datasets in representation learning, but also provides interpretable contrastive weights, demonstrating the efficacy of the proposed doubly contrastive strategy.
In this paper, we investigate the problem of decentralized federated learning (DFL) in Internet of things (IoT) systems, where a number of IoT clients train models collectively for a common task without sharing their private training data in the abse nce of a central server. Most of the existing DFL schemes are composed of two alternating steps, i.e., model updating and model averaging. However, averaging model parameters directly to fuse different models at the local clients suffers from client-drift especially when the training data are heterogeneous across different clients. This leads to slow convergence and degraded learning performance. As a possible solution, we propose the decentralized federated earning via mutual knowledge transfer (Def-KT) algorithm where local clients fuse models by transferring their learnt knowledge to each other. Our experiments on the MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets reveal that the proposed Def-KT algorithm significantly outperforms the baseline DFL methods with model averaging, i.e., Combo and FullAvg, especially when the training data are not independent and identically distributed (non-IID) across different clients.
Federated Semi-Supervised Learning (FedSSL) has gained rising attention from both academic and industrial researchers, due to its unique characteristics of co-training machine learning models with isolated yet unlabeled data. Most existing FedSSL met hods focus on the classical scenario, i.e, the labeled and unlabeled data are stored at the client side. However, in real world applications, client users may not provide labels without any incentive. Thus, the scenario of labels at the server side is more practical. Since unlabeled data and labeled data are decoupled, most existing FedSSL approaches may fail to deal with such a scenario. To overcome this problem, in this paper, we propose FedCon, which introduces a new learning paradigm, i.e., contractive learning, to FedSSL. Experimental results on three datasets show that FedCon achieves the best performance with the contractive framework compared with state-of-the-art baselines under both IID and Non-IID settings. Besides, ablation studies demonstrate the characteristics of the proposed FedCon framework.
Contrastive learning applied to self-supervised representation learning has seen a resurgence in recent years, leading to state of the art performance in the unsupervised training of deep image models. Modern batch contrastive approaches subsume or s ignificantly outperform traditional contrastive losses such as triplet, max-margin and the N-pairs loss. In this work, we extend the self-supervised batch contrastive approach to the fully-supervised setting, allowing us to effectively leverage label information. Clusters of points belonging to the same class are pulled together in embedding space, while simultaneously pushing apart clusters of samples from different classes. We analyze two possib

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا