ﻻ يوجد ملخص باللغة العربية
Lasers are ubiquitous for information storage, processing, communications, sensing, biological research, and medical applications [1]. To decrease their energy and materials usage, a key quest is to miniaturize lasers down to nanocavities [2]. Obtaining the smallest mode volumes demands plasmonic nanocavities, but for these, gain comes from only single or few emitters. Until now, lasing in such devices was unobtainable due to low gain and high cavity losses [3]. Here, we demonstrate a plasmonic nanolaser approaching the single-molecule emitter regime. The lasing transition significantly broadens, and depends on the number of molecules and their individual locations. We show this can be understood by developing a theoretical approach [4] extending previous weak-coupling theories [5]. Our work paves the way for developing nanolaser applications [2, 6, 7] as well as fundamental studies at the limit of few emitters [5, 8, 9].
Coupling $N$ identical emitters to the same field mode is well-established method to enhance light matter interaction. However, the resulting $sqrt{N}$ boost of the coupling strength comes at the cost of a linearized (effectively semi-classical) dyna
The regime of strong light-matter coupling is typically associated with weak excitation. With current realizations of cavity-QED systems, strong coupling may persevere even at elevated excitation levels sufficient to cross the threshold to lasing. In
Controlling absorption and emission of organic molecules is crucial for efficient light-emitting diodes, organic solar cells and single-molecule spectroscopy. Here, a new molecular absorption is activated inside a gold plasmonic nanocavity, and found
Photonic nanocavities are a key component in many applications because of their capability of trapping and storing photons and enhancing interactions of light with various functional materials and structures. The maximal number of photons that can be
The surprising recent observation of highly emissive triplet-states in lead halide perovskites accounts for their orders-of-magnitude brighter optical signals and high quantum efficiencies compared to other semiconductors. This makes them attractive