ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong light-matter coupling in the presence of lasing

267   0   0.0 ( 0 )
 نشر من قبل Fabian Gericke
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The regime of strong light-matter coupling is typically associated with weak excitation. With current realizations of cavity-QED systems, strong coupling may persevere even at elevated excitation levels sufficient to cross the threshold to lasing. In the presence of stimulated emission, the vacuum-Rabi doublet in the emission spectrum is modified and the established criterion for strong coupling no longer applies. We provide a generalized criterion for strong coupling and the corresponding emission spectrum, which includes the influence of higher Jaynes-Cummings states. The applicability is demonstrated in a theory-experiment comparison of a few-emitter quantum-dot--micropillar laser as a particular realization of the driven dissipative Jaynes-Cummings model. Furthermore, we address the question if and for which parameters true single-emitter lasing can be achieved, and provide evidence for the coexistence of strong coupling and lasing in our system in the presence of background emitter contributions.



قيم البحث

اقرأ أيضاً

Cavity photon resonators with ultrastrong light-matter interactions are attracting interest both in semiconductor and superconducting systems displaying the capability to manipulate the cavity quantum electrodynamic ground state with controllable phy sical properties. Here we review a series of experiments aimed at probing the ultrastrong light-matter coupling regime, where the vacuum Rabi splitting $Omega$ is comparable to the bare transition frequency $omega$ . We present a new platform where the inter-Landau level transition of a two-dimensional electron gas (2DEG) is strongly coupled to the fundamental mode of deeply subwavelength split-ring resonators operating in the mm-wave range. Record-high values of the normalized light-matter coupling ratio $frac{Omega}{omega}= 0.89$ are reached and the system appears highly scalable far into the microwave range.
Brillouin scattering has applications ranging from signal processing, sensing and microscopy, to quantum information and fundamental science. Most of these applications rely on the electrostrictive interaction between light and phonons. Here we show that in liquids optically-induced surface deformations can provide an alternative and far stronger interaction. This allows the demonstration of ultralow threshold Brillouin lasing and strong phonon-mediated optical coupling for the first time. This form of strong coupling is a key capability for Brillouin-reconfigurable optical switches and circuits, for photonic quantum interfaces, and to generate synthetic electromagnetic fields. While applicable to liquids quite generally, our demonstration uses superfluid helium. Configured as a Brillouin gyroscope this provides the prospect of measuring superfluid circulation with unprecedented precision, and to explore the rich physics of quantum fluid dynamics, from quantized vorticity to quantum turbulence.
We demonstrate that a ionising transition can be strongly coupled to a photonic resonance. The strong coupling manifests itself with the appearance of a narrow optically active resonance below the ionisation threshold. Such a resonance is due to elec trons transitioning into a novel bound state created by the collective coupling of the electron gas with the vacuum field of the photonic resonator. Applying our theory to the case of bound-to-continuum transitions in microcavity-embedded doped quantum wells, we show how those strong-coupling features can be exploited as a novel knob to tune both optical and electronic properties of semiconductor heterostructures.
In the presence of Rashba-Dresselhaus coupling, strong spin-orbit interactions in liquid crystal optical cavities result in a distinctive spin-split entangled dispersion. Spin coherence between such modes give rise to an optical persistent-spin-helix . In this letter, we introduce optical gain in such a system, by dispersing a molecular dye in a liquid-crystal microcavity. We demonstrate both lasing in the Rashba-Dresselhaus regime and the emergence of an optical persistent spin helix.
The propagation of $N$ photons in one dimensional waveguides coupled to $M$ qubits is discussed, both in the strong and ultrastrong qubit-waveguide coupling. Special emphasis is placed on the characterisation of the nonlinear response and its linear limit for the scattered photons as a function of $N$, $M$, qubit inter distance and light-matter coupling. The quantum evolution is numerically solved via the Matrix Product States technique. Both the time evolution for the field and qubits is computed. The nonlinear character (as a function of $N/M$) depends on the computed observable. While perfect reflection is obtained for $N/M cong 1$, photon-photon correlations are still resolved for ratios $N/M= 2/20$. Inter-qubit distance enhances the nonlinear response. Moving to the ultrastrong coupling regime, we observe that inelastic processes are emph{robust} against the number of qubits and that the qubit-qubit interaction mediated by the photons is qualitatively modified. The theory developed in this work modelises experiments in circuit QED, photonic crystals and dielectric waveguides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا