ترغب بنشر مسار تعليمي؟ اضغط هنا

Single Quantum Emitter Dicke Enhancement

80   0   0.0 ( 0 )
 نشر من قبل Tommaso Tufarelli Dr
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Coupling $N$ identical emitters to the same field mode is well-established method to enhance light matter interaction. However, the resulting $sqrt{N}$ boost of the coupling strength comes at the cost of a linearized (effectively semi-classical) dynamics. Here, we instead demonstrate a new approach for enhancing the coupling constant of a textit{single} quantum emitter, while retaining the nonlinear character of the light-matter interaction. We consider a single quantum emitter with $N$ nearly degenerate transitions that are collectively coupled to the same field mode. We show that in such conditions an effective Jaynes-Cummings model emerges, with a boosted coupling constant of order $sqrt{N}$. The validity and consequences of our general conclusions are analytically demonstrated for the instructive case $N=2$. We further observe that our system can closely match the spectral line shapes and photon autocorrelation functions typical of Jaynes-Cummings physics, hence proving that quantum optical nonlinearities are retained. Our findings match up very well with recent broadband plasmonic nanoresonator strong-coupling experiments and will therefore facilitate the control and detection of single-photon nonlinearities at ambient conditions.

قيم البحث

اقرأ أيضاً

101 - Pai Peng , Yong-Chun Liu , Da Xu 2017
Localized-surface plasmon resonance is of importance in both fundamental and applied physics for the subwavelength confinement of optical field, but realization of quantum coherent processes is confronted with challenges due to strong dissipation. He re we propose to engineer the electromagnetic environment of metallic nanoparticles (MNPs) using optical microcavities. An analytical quantum model is built to describe the MNP-microcavity interaction, revealing the significantly enhanced dipolar radiation and consequentially reduced Ohmic dissipation of the plasmonic modes. As a result, when interacting with a quantum emitter, the microcavity-engineered MNP enhances the quantum yield over 40 folds and the radiative power over one order of magnitude. Moreover, the system can enter the strong coupling regime of cavity quantum electrodynamics, providing a promising platform for the study of plasmonic quantum electrodynamics, quantum information processing, precise sensing and spectroscopy.
89 - Hui Wang , Z.-C. Duan , Y.-H. Li 2016
By pulsed s-shell resonant excitation of a single quantum dot-micropillar system, we generate long streams of a thousand of near transform-limited single photons with high mutual indistinguishability. Hong-Ou-Mandel interference of two photons are me asured as a function of their emission time separation varying from 13 ns to 14.7 {mu}s, where the visibility slightly drops from 95.9(2)% to a plateau of 92.1(5)% through a slow dephasing process occurring at time scale of 0.7 {mu}s. Temporal and spectral analysis reveal the pulsed resonance fluorescence single photons are close to transform limit, which are readily useful for multi-photon entanglement and interferometry experiments.
The recent maturation of hybrid quantum devices has led to significant enhancements in the functionality of a wide variety of quantum systems. In particular, harnessing mechanical resonators for manipulation and control has expanded the use of two-le vel systems in quantum information science and quantum sensing. In this letter, we report on a monolithic hybrid quantum device in which strain fields associated with resonant vibrations of a diamond cantilever dynamically control the optical transitions of a single nitrogen-vacancy (NV) defect center in diamond. We quantitatively characterize the strain coupling to the orbital states of the NV center, and with mechanical driving, we observe NV-strain couplings exceeding 10 GHz. Furthermore, we use this strain-mediated coupling to match the frequency and polarization dependence of the zero-phonon lines of two spatially separated and initially distinguishable NV centers. The experiments demonstrated here mark an important step toward engineering a quantum device capable of realizing and probing the dynamics of non-classical states of mechanical resonators, spin-systems, and photons.
We present an overview of the framework of macroscopic quantum electrodynamics from a quantum nanophotonics perspective. Particularly, we focus our attention on three aspects of the theory which are crucial for the description of quantum optical phen omena in nanophotonic structures. First, we review the light-matter interaction Hamiltonian itself, with special emphasis on its gauge independence and the minimal and multipolar coupling schemes. Second, we discuss the treatment of the external pumping of quantum-optical systems by classical electromagnetic fields. Third, we introduce an exact, complete and minimal basis for the field quantization in multi-emitter configurations, which is based on the so-called emitter-centered modes. Finally, we illustrate this quantization approach in a particular hybrid metallodielectric geometry: two quantum emitters placed in the vicinity of a dimer of Ag nanospheres embedded in a SiN microdisk.
107 - Yu He , Y.-M. He , J. Liu 2014
We report the first experimental demonstration of interference-induced spectral line elimination predicted by Zhu and Scully [Phys. Rev. Lett. 76, 388 (1996)] and Ficek and Rudolph [Phys. Rev. A 60, 4245 (1999)]. We drive an exciton transition of a s elf-assembled quantum dot in order to realize a two-level system exposed to bichromatic laser field and observe nearly complete elimination of the resonance fluorescence spectral line at the driving laser frequency. This is caused by quantum interference between coupled transitions among the doubly dressed excitonic states, without population trapping. We also demonstrate multiphoton ac Stark effect with shifted subharmonic resonances and dynamical modifications of resonance fluorescence spectra by using double dressing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا