ترغب بنشر مسار تعليمي؟ اضغط هنا

StarcNet: Machine Learning for Star Cluster Identification

113   0   0.0 ( 0 )
 نشر من قبل Gustavo Perez
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a machine learning (ML) pipeline to identify star clusters in the multi{color images of nearby galaxies, from observations obtained with the Hubble Space Telescope as part of the Treasury Project LEGUS (Legacy ExtraGalactic Ultraviolet Survey). StarcNet (STAR Cluster classification NETwork) is a multi-scale convolutional neural network (CNN) which achieves an accuracy of 68.6% (4 classes)/86.0% (2 classes: cluster/non-cluster) for star cluster classification in the images of the LEGUS galaxies, nearly matching human expert performance. We test the performance of StarcNet by applying pre-trained CNN model to galaxies not included in the training set, finding accuracies similar to the reference one. We test the effect of StarcNet predictions on the inferred cluster properties by comparing multi-color luminosity functions and mass-age plots from catalogs produced by StarcNet and by human-labeling; distributions in luminosity, color, and physical characteristics of star clusters are similar for the human and ML classified samples. There are two advantages to the ML approach: (1) reproducibility of the classifications: the ML algorithms biases are fixed and can be measured for subsequent analysis; and (2) speed of classification: the algorithm requires minutes for tasks that humans require weeks to months to perform. By achieving comparable accuracy to human classifiers, StarcNet will enable extending classifications to a larger number of candidate samples than currently available, thus increasing significantly the statistics for cluster studies.

قيم البحث

اقرأ أيضاً

The vast volume of data generated by modern astronomical surveys offers test beds for the application of machine-learning. It is important to evaluate potential existing tools and determine those that are optimal for extracting scientific knowledge f rom the available observations. We explore the possibility of using clustering algorithms to separate stellar populations with distinct chemical patterns. Star clusters are likely the most chemically homogeneous populations in the Galaxy, and therefore any practical approach to identifying distinct stellar populations should at least be able to separate clusters from each other. We applied eight clustering algorithms combined with four dimensionality reduction strategies to automatically distinguish stellar clusters using chemical abundances of 13 elements. Our sample includes 18 stellar clusters with a total of 453 stars. We use statistical tests showing that some pairs of clusters are indistinguishable from each other when chemical abundances from the Apache Point Galactic Evolution Experiment (APOGEE) are used. However, for most clusters we are able to automatically assign membership with metric scores similar to previous works. The confusion level of the automatically selected clusters is consistent with statistical tests that demonstrate the impossibility of perfectly distinguishing all the clusters from each other. These statistical tests and confusion levels establish a limit for the prospect of blindly identifying stars born in the same cluster based solely on chemical abundances. We find that some of the algorithms we explored are capable of blindly identify stellar populations with similar ages and chemical distributions in the APOGEE data. Because some stellar clusters are chemically indistinguishable, our study supports the notion of extending weak chemical tagging that involves families of clusters instead of individual clusters
We describe a new metric that uses machine learning to determine if a periodic signal found in a photometric time series appears to be shaped like the signature of a transiting exoplanet. This metric uses dimensionality reduction and k-nearest neighb ors to determine whether a given signal is sufficiently similar to known transits in the same data set. This metric is being used by the Kepler Robovetter to determine which signals should be part of the Q1-Q17 DR24 catalog of planetary candidates. The Kepler Mission reports roughly 20,000 potential transiting signals with each run of its pipeline, yet only a few thousand appear sufficiently transit shaped to be part of the catalog. The other signals tend to be variable stars and instrumental noise. With this metric we are able to remove more than 90% of the non-transiting signals while retaining more than 99% of the known planet candidates. When tested with injected transits, less than 1% are lost. This metric will enable the Kepler mission and future missions looking for transiting planets to rapidly and consistently find the best planetary candidates for follow-up and cataloging.
We study individual pulses of Vela (PSR B0833-45,/,J0835-4510) from daily observations of over three hours (around 120,000 pulses per observation), performed simultaneously with the two radio telescopes at the Argentine Institute of Radioastronomy. W e select 4 days of observations in January-March 2021 and study their statistical properties with machine learning techniques. We first use density based DBSCAN clustering techniques, associating pulses mainly by amplitudes, and find a correlation between higher amplitudes and earlier arrival times. We also find a weaker (polarization dependent) correlation with the mean width of the pulses. We identify clusters of the so-called mini-giant pulses, with $sim10times$ the average pulse amplitude. We then perform an independent study, with Self-Organizing Maps (SOM) clustering techniques. We use Variational AutoEncoder (VAE) reconstruction of the pulses to separate them clearly from the noise and select one of the days of observation to train VAE and apply it to thre rest of the observations. We use SOM to determine 4 clusters of pulses per day per radio telescope and conclude that our main results are robust and self-consistent. These results support models for emitting regions at different heights (separated each by roughly a hundred km) in the pulsar magnetosphere. We also model the pulses amplitude distribution with interstellar scintillation patterns at the inter-pulses time-scale finding a characterizing exponent $n_{mathrm{ISS}}sim7-10$. In the appendices we discuss independent checks of hardware systematics with the simultaneous use of the two radio telescopes in different one-polarization / two-polarizations configurations. We also provide a detailed analysis of the processes of radio-interferences cleaning and individual pulse folding.
We present the results of a proof-of-concept experiment which demonstrates that deep learning can successfully be used for production-scale classification of compact star clusters detected in HST UV-optical imaging of nearby spiral galaxies (D < 20 M pc) in the PHANGS-HST survey. Given the relatively small nature of existing, human-labelled star cluster samples, we transfer the knowledge of state-of-the-art neural network models for real-object recognition to classify star clusters candidates into four morphological classes. We perform a series of experiments to determine the dependence of classification performance on: neural network architecture (ResNet18 and VGG19-BN); training data sets curated by either a single expert or three astronomers; and the size of the images used for training. We find that the overall classification accuracies are not significantly affected by these choices. The networks are used to classify star cluster candidates in the PHANGS-HST galaxy NGC 1559, which was not included in the training samples. The resulting prediction accuracies are 70%, 40%, 40-50%, 50-70% for class 1, 2, 3 star clusters, and class 4 non-clusters respectively. This performance is competitive with consistency achieved in previously published human and automated quantitative classification of star cluster candidate samples (70-80%, 40-50%, 40-50%, and 60-70%). The methods introduced herein lay the foundations to automate classification for star clusters at scale, and exhibit the need to prepare a standardized dataset of human-labelled star cluster classifications, agreed upon by a full range of experts in the field, to further improve the performance of the networks introduced in this study.
We present a star/galaxy classification for the Southern Photometric Local Universe Survey (S-PLUS), based on a Machine Learning approach: the Random Forest algorithm. We train the algorithm using the S-PLUS optical photometry up to $r$=21, matched t o SDSS/DR13, and morphological parameters. The metric of importance is defined as the relative decrease of the initial accuracy when all correlations related to a certain feature is vanished. In general, the broad photometric bands presented higher importance when compared to narrow ones. The influence of the morphological parameters has been evaluated training the RF with and without the inclusion of morphological parameters, presenting accuracy values of 95.0% and 88.1%, respectively. Particularly, the morphological parameter {rm FWHM/PSF} performed the highest importance over all features to distinguish between stars and galaxies, indicating that it is crucial to classify objects into stars and galaxies. We investigate the misclassification of stars and galaxies in the broad-band colour-colour diagram $(g-r)$ versus $(r-i)$. The morphology can notably improve the classification of objects at regions in the diagram where the misclassification was relatively high. Consequently, it provides cleaner samples for statistical studies. The expected contamination rate of red galaxies as a function of the redshift is estimated, providing corrections for red galaxy samples. The classification of QSOs as extragalactic objects is slightly better using photometric-only case. An extragalactic point-source catalogue is provided using the classification without any morphology feature (only the SED information) with additional constraints on photometric redshifts and {rm FWHM/PSF} values.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا