ﻻ يوجد ملخص باللغة العربية
We address the following question: what can one say, for a tuple $(Y_1,dots,Y_d)$ of normal operators in a tracial operator algebra setting with prescribed sizes of the eigenspaces for each $Y_i$, about the sizes of the eigenspaces for any non-commutative polynomial $P(Y_1,dots,Y_d)$ in those operators? We show that for each polynomial $P$ there are unavoidable eigenspaces, which occur in $P(Y_1,dots,Y_d)$ for any $(Y_1,dots,Y_d)$ with the prescribed eigenspaces for the marginals. We will describe this minimal situation both in algebraic terms - where it is given by realizations via matrices over the free skew field and via rank calculations - and in analytic terms - where it is given by freely independent random variables with prescribed atoms in their distributions. The fact that the latter situation corresponds to this minimal situation allows to draw many new conclusions about atoms in polynomials of free variables. In particular, we give a complete description of atoms in the free commutator and the free anti-commutator. Furthermore, our results do not only apply to polynomials, but much more general also to non-commutative rational functions.
We formulate a free probabilistic analog of the Wasserstein manifold on $mathbb{R}^d$ (the formal Riemannian manifold of smooth probability densities on $mathbb{R}^d$), and we use it to study smooth non-commutative transport of measure. The points of
The purpose of this short note was to outline the current status, then in 2011, of some research programs aiming at a categorification of parts of A.Connes non-commutative geometry and to provide an outlook on some possible subsequent developments in categorical non-commutative geometry.
In this paper we show how questions about operator algebras constructed from stochastic matrices motivate new results in the study of harmonic functions on Markov chains. More precisely, we characterize coincidence of conditional probabilities in ter
A Herglotz function is a holomorphic map from the open complex unit disk into the closed complex right halfplane. A classical Herglotz function has an integral representation against a positive measure on the unit circle. We prove a free analytic ana
After an introduction to some basic issues in non-commutative geometry (Gelfand duality, spectral triples), we present a panoramic view of the status of our current research program on the use of categorical methods in the setting of A.Connes non-com