ﻻ يوجد ملخص باللغة العربية
After an introduction to some basic issues in non-commutative geometry (Gelfand duality, spectral triples), we present a panoramic view of the status of our current research program on the use of categorical methods in the setting of A.Connes non-commutative geometry: morphisms/categories of spectral triples, categorification of Gelfand duality. We conclude with a summary of the expected applications of categorical non-commutative geometry to structural questions in relativistic quantum physics: (hyper)covariance, quantum space-time, (algebraic) quantum gravity.
The purpose of this short note was to outline the current status, then in 2011, of some research programs aiming at a categorification of parts of A.Connes non-commutative geometry and to provide an outlook on some possible subsequent developments in categorical non-commutative geometry.
We study the free-fall of a quantum particle in the context of noncommutative quantum mechanics (NCQM). Assuming noncommutativity of the canonical type between the coordinates of a two-dimensional configuration space, we consider a neutral particle t
It is shown that a $d$-dimensional classical SU(N) Yang-Mills theory can be formulated in a $d+2$-dimensional space, with the extra two dimensions forming a surface with non-commutative geometry. In this paper we present an explicit proof for the case of the torus and the sphere.
It is shown that a $d$-dimensional classical SU(N) Yang-Mills theory can be formulated in a $d+2$-dimensional space, with the extra two dimensions forming a surface with non-commutative geometry.
In this paper we show how questions about operator algebras constructed from stochastic matrices motivate new results in the study of harmonic functions on Markov chains. More precisely, we characterize coincidence of conditional probabilities in ter