ترغب بنشر مسار تعليمي؟ اضغط هنا

Tracial smooth functions of non-commuting variables and the free Wasserstein manifold

70   0   0.0 ( 0 )
 نشر من قبل David Jekel
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We formulate a free probabilistic analog of the Wasserstein manifold on $mathbb{R}^d$ (the formal Riemannian manifold of smooth probability densities on $mathbb{R}^d$), and we use it to study smooth non-commutative transport of measure. The points of the free Wasserstein manifold $mathscr{W}(mathbb{R}^{*d})$ are smooth tracial non-commutative functions $V$ with quadratic growth at $infty$, which correspond to minus the log-density in the classical setting. The space of smooth tracial non-commutative functions used here is a new one whose definition and basic properties we develop in the paper; they are scalar-valued functions of self-adjoint $d$-tuples from arbitrary tracial von Neumann algebras that can be approximated by trace polynomials. The space of non-commutative diffeomorphisms $mathscr{D}(mathbb{R}^{*d})$ acts on $mathscr{W}(mathbb{R}^{*d})$ by transport, and the basic relationship between tangent vectors for $mathscr{D}(mathbb{R}^{*d})$ and tangent vectors for $mathscr{W}(mathbb{R}^{*d})$ is described using the Laplacian $L_V$ associated to $V$ and its pseudo-inverse $Psi_V$ (when defined). Following similar arguments to arXiv:1204.2182, arXiv:1701.00132, and arXiv:1906.10051 in the new setting, we give a rigorous proof for the existence of smooth transport along any path $t mapsto V_t$ when $V$ is sufficiently close $(1/2) sum_j operatorname{tr}(x_j^2)$, as well as smooth triangular transport.



قيم البحث

اقرأ أيضاً

We address the following question: what can one say, for a tuple $(Y_1,dots,Y_d)$ of normal operators in a tracial operator algebra setting with prescribed sizes of the eigenspaces for each $Y_i$, about the sizes of the eigenspaces for any non-commut ative polynomial $P(Y_1,dots,Y_d)$ in those operators? We show that for each polynomial $P$ there are unavoidable eigenspaces, which occur in $P(Y_1,dots,Y_d)$ for any $(Y_1,dots,Y_d)$ with the prescribed eigenspaces for the marginals. We will describe this minimal situation both in algebraic terms - where it is given by realizations via matrices over the free skew field and via rank calculations - and in analytic terms - where it is given by freely independent random variables with prescribed atoms in their distributions. The fact that the latter situation corresponds to this minimal situation allows to draw many new conclusions about atoms in polynomials of free variables. In particular, we give a complete description of atoms in the free commutator and the free anti-commutator. Furthermore, our results do not only apply to polynomials, but much more general also to non-commutative rational functions.
We investigate the notion of tracial $mathcal Z$-stability beyond unital C*-algebras, and we prove that this notion is equivalent to $mathcal Z$-stability in the class of separable simple nuclear C*-algebras.
In this article, we prove various smooth uncertainty principles on von Neumann bi-algebras, which unify numbers of uncertainty principles on quantum symmetries, such as subfactors, and fusion bi-algebras etc, studied in quantum Fourier analysis. We a lso obtain Widgerson-Wigderson type uncertainty principles for von Neumann bi-algebras. Moreover, we give a complete answer to a conjecture proposed by A. Wigderson and Y. Wigderson.
A Herglotz function is a holomorphic map from the open complex unit disk into the closed complex right halfplane. A classical Herglotz function has an integral representation against a positive measure on the unit circle. We prove a free analytic ana logue of the Herglotz representation and describe how our representations specialize to the free probabilistic case. We also show that the set of representable Herglotz functions arising from noncommutative conditional expectations must be closed in a natural topology.
90 - Ching-Wei Ho 2020
Let $x_0$ be a possibly-unbounded self-adjoint random variable, $tildesigma_alpha$ and $sigma_beta$ are semicircular variables with variances $alphageq 0$ and $beta>0$ respectively (when $alpha = 0$, $tildesigma_alpha = 0$). Suppose $x_0$, $sigma_alp ha$, and $tildesigma_beta$ are all freely independent. We compute the Brown measure of $x_0+tildesigma_alpha+isigma_beta$, extending the previous computations which only work for bounded self-adjoint random variable $x_0$. The Brown measure in this unbounded case has the same structure as in the bounded case; it has connections to the free convolution $x_0+sigma_{alpha+beta}$. We also compute the example where $x_0$ is Cauchy-distributed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا