ﻻ يوجد ملخص باللغة العربية
Transition metal dichalcogenides (TMDs) are promising materials for efficient generation of current-induced spin-orbit torques on an adjacent ferromagnetic layer. Numerous effects, both interfacial and bulk, have been put forward to explain the different torques previously observed. Thus far, however, there is no clear consensus on the microscopic origin underlying the spin-orbit torques observed in these TMD/ferromagnet bilayers. To shine light on the microscopic mechanisms at play, here we perform thickness dependent spin-orbit torque measurements on the semiconducting WSe$_{2}$/permalloy bilayer with various WSe$_{2}$ layer thickness, down to the monolayer limit. We observe a large out-of-plane field-like torque with spin-torque conductivities up to $1times10^4 ({hbar}/2e) ({Omega}m)^{-1}$. For some devices, we also observe a smaller in-plane antidamping-like torque, with spin-torque conductivities up to $4times10^{3} ({hbar}/2e) ({Omega}m)^{-1}$, comparable to other TMD-based systems. Both torques show no clear dependence on the WSe$_{2}$ thickness, as expected for a Rashba system. Unexpectedly, we observe a strong in-plane magnetic anisotropy - up to about $6.6times10^{4} erg/cm^{3}$ - induced in permalloy by the underlying hexagonal WSe$_{2}$ crystal. Using scanning transmission electron microscopy, we confirm that the easy axis of the magnetic anisotropy is aligned to the armchair direction of the WSe$_{2}$. Our results indicate a strong interplay between the ferromagnet and TMD, and unveil the nature of the spin-orbit torques in TMD-based devices. These findings open new avenues for possible methods for optimizing the torques and the interaction with interfaced magnets, important for future non-volatile magnetic devices for data processing and storage.
Spin-orbit torques in ferromagnetic (FM)/non-magnetic (NM) heterostructures offer more energy-efficient means to realize spin-logic devices; however, their strengths are determined by the heterostructure interface. This work examines crystal orientat
Spin-orbit torques offer a promising mechanism for electrically controlling magnetization dynamics in nanoscale heterostructures. While spin-orbit torques occur predominately at interfaces, the physical mechanisms underlying these torques can origina
Six-fold configurational anisotropy was studied in Permalloy triangles, in which the shape symmetry order yields two energetically non-degenerate micromagnetic configurations of the spins, the so-called Y and buckle states. A twelve pointed switching
Current induced spin-orbit torques have been studied in ferromagnetic nanowires made of 20 nm thick Co/Pd multilayers with perpendicular magnetic anisotropy. Using Hall voltage and lock-in measurements, it is found that upon injection of an electric
The bilayer heterostructures composed of an ultrathin ferromagnetic metal (FM) and a material hosting strong spin-orbit (SO) coupling are principal resource for SO torque and spin-to-charge conversion nonequilibrium effects in spintronics. We demonst