ترغب بنشر مسار تعليمي؟ اضغط هنا

Mechanically Modulated Sideband and Squeezing Effects of Membrane Resonators

66   0   0.0 ( 0 )
 نشر من قبل Fan Yang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the sideband spectra of a driven nonlinear mode with its eigenfrequency being modulated at a low frequency (< 1 kHz). This additional parametric modulation leads to prominent antiresonance lineshapes in the sideband spectra, which can be controlled through the vibration state of the driven mode. We also establish a direct connection between the antiresonance frequency and the squeezing of thermal fluctuation in the system. Our work not only provides a simple and robust method for squeezing characterization but also opens a new possibility toward sideband applications.

قيم البحث

اقرأ أيضاً

We present an experimental study of dynamical back-action cooling of the fundamental vibrational mode of a thin semitransparent membrane placed within a high-finesse optical cavity. We study how the radiation pressure interaction modifies the mechani cal response of the vibrational mode, and the experimental results are in agreement with a Langevin equation description of the coupled dynamics. The experiments are carried out in the resolved sideband regime, and we have observed cooling by a factor 350 We have also observed the mechanical frequency shift associated with the quadratic term in the expansion of the cavity mode frequency versus the effective membrane position, which is typically negligible in other cavity optomechanical devices.
Lossy dielectrics are a significant source of decoherence in superconducting quantum circuits. In this report, we model and compare the dielectric loss in bulk and interfacial dielectrics in titanium nitride (TiN) and aluminum (Al) superconducting co planar waveguide (CPW) resonators. We fabricate isotropically trenched resonators to produce a series of device geometries that accentuate a specific dielectric regions contribution to resonator quality factor. While each dielectric region contributes significantly to loss in TiN devices, the metal-air interface dominates the loss in the Al devices. Furthermore, we evaluate the quality factor of each TiN resonator geometry with and without a post-process hydrofluoric (HF) etch, and find that it reduced losses from the substrate-air interface, thereby improving the quality factor.
There are a number of theoretical proposals based on strain engineering of graphene and other two-dimensional materials, however purely mechanical control of strain fields in these systems has remained a major challenge. The two approaches mostly use d so far either couple the electrical and mechanical properties of the system simultaneously or introduce some unwanted disturbances due to the substrate. Here, we report on silicon micro-machined comb-drive actuators to controllably and reproducibly induce strain in a suspended graphene sheet, in an entirely mechanical way. We use spatially resolved confocal Raman spectroscopy to quantify the induced strain, and we show that different strain fields can be obtained by engineering the clamping geometry, including tunable strain gradients of up to 1.4 %/$mu$m. Our approach also allows for multiple axis straining and is equally applicable to other two-dimensional materials, opening the door to an investigating their mechanical and electromechanical properties. Our measurements also clearly identify defects at the edges of a graphene sheet as being weak spots responsible for its mechanical failure.
We study a hybrid semiconductor-optomechanical system, which consists of a cavity with an oscillating mirror made by semiconducting materials or with a semiconducting membrane inside. The cavity photons and the excitons in the oscillating mirror or s emiconducting membrane form into polaritons. And correspondingly, the optomechanical interaction between the cavity photons and the mirror or membrane is changed into the polariton-mechanical interaction. We theoretically study the eigenenergies and eigenfunctions of this tripartite hybrid system with the generalized rotating-wave approximation. We show that the emission spectrum of polariton mode is modulated by the mechanical resonator. We also study the mechanical effect on the statistical properties of the polariton when the cavity is driven by a weak classical field. This work provides a detailed description of the rich nonlinearity owing to the competition between parametric coupling and three-wave mixing interaction concerning the polariton modes and the phonon mode. It also offers a way to operate the photons, phonons and excitons, e.g., detect the properties of mechanical resonator through the fine spectra of the polaritons or control the transmission of light in the integrated semiconducting-optomechanical platform.
The successes of superconducting quantum circuits at local manipulation of quantum information and photonics technology at long-distance transmission of the same have spurred interest in the development of quantum transducers for efficient, low-noise , and bidirectional frequency conversion of photons between the microwave and optical domains. We propose to realize such functionality through the coupling of electrical, piezoelectric, and optomechanical resonators. The coupling of the mechanical subsystems enables formation of a resonant mechanical supermode that provides a mechanically-mediated, efficient single interface to both the microwave and optical domains. The conversion process is analyzed by applying an equivalent circuit model that relates device-level parameters to overall figures of merit for conversion efficiency $eta$ and added noise $N$. These can be further enhanced by proper impedance matching of the transducer to an input microwave transmission line. The performance of potential transducers is assessed through finite-element simulations, with a focus on geometries in GaAs, followed by considerations of the AlN, LiNbO$_3$, and AlN-on-Si platforms. We present strategies for maximizing $eta$ and minimizing $N$, and find that simultaneously achieving $eta>50~%$ and $N < 0.5$ should be possible with current technology. We find that the use of a mechanical supermode for mediating transduction is a key enabler for high-efficiency operation, particularly when paired with an appropriate microwave impedance matching network. Our comprehensive analysis of the full transduction chain enables us to outline a development path for the realization of high-performance quantum transducers that will constitute a valuable resource for quantum information science.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا