ترغب بنشر مسار تعليمي؟ اضغط هنا

Tailoring mechanically-tunable strain fields in graphene

205   0   0.0 ( 0 )
 نشر من قبل Gerard Verbiest
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

There are a number of theoretical proposals based on strain engineering of graphene and other two-dimensional materials, however purely mechanical control of strain fields in these systems has remained a major challenge. The two approaches mostly used so far either couple the electrical and mechanical properties of the system simultaneously or introduce some unwanted disturbances due to the substrate. Here, we report on silicon micro-machined comb-drive actuators to controllably and reproducibly induce strain in a suspended graphene sheet, in an entirely mechanical way. We use spatially resolved confocal Raman spectroscopy to quantify the induced strain, and we show that different strain fields can be obtained by engineering the clamping geometry, including tunable strain gradients of up to 1.4 %/$mu$m. Our approach also allows for multiple axis straining and is equally applicable to other two-dimensional materials, opening the door to an investigating their mechanical and electromechanical properties. Our measurements also clearly identify defects at the edges of a graphene sheet as being weak spots responsible for its mechanical failure.



قيم البحث

اقرأ أيضاً

Spintronic devices based on antiferromagnetic (AFM) materials hold the promise of fast switching speeds and robustness against magnetic fields. Different device concepts have been predicted and experimentally demonstrated, such as low-temperature AFM tunnel junctions that operate as spin-valves, or room-temperature AFM memory, for which either thermal heating in combination with magnetic fields, or Neel spin-orbit torque is used for the information writing process. On the other hand, piezoelectric materials were employed to control magnetism by electric fields in multiferroic heterostructures, which suppresses Joule heating caused by switching currents and may enable low energy-consuming electronic devices. Here, we combine the two material classes to explore changes of the resistance of the high-Neel-temperature antiferromagnet MnPt induced by piezoelectric strain. We find two non-volatile resistance states at room temperature and zero electric field, which are stable in magnetic fields up to 60 T. Furthermore, the strain-induced resistance switching process is insensitive to magnetic fields. Integration in a tunnel junction can further amplify the electroresistance. The tunneling anisotropic magnetoresistance reaches ~11.2% at room temperature. Overall, we demonstrate a piezoelectric, strain-controlled AFM memory which is fully operational in strong magnetic fields and has potential for low-energy and high-density memory applications.
256 - Xuewen Fu , Cong Su , Qiang Fu 2013
As device miniaturization approaches the atomic limit, it becomes highly desirable to exploit novel paradigms for tailoring electronic structures and carrier dynamics in materials. Elastic strain can in principle be applied to achieve reversible and fast control of such properties, but it remains a great challenge to create and utilize precisely controlled inhomogeneous deformation in semiconductors. Here, we take a combined experimental and theoretical approach to demonstrate that elastic strain-gradient can be created controllably and reversibly in ZnO micro/nanowires. In particular, we show that the inhomogeneous strain distribution creates an effective field that fundamentally alters the dynamics of the neutral excitons. As the basic principles behind these results are quite generic and applicable to most semiconductors, this work points to a novel route to a wide range of applications in electronics, optoelectronics, and photochemistry.
We report a systematic first-principles investigation of the influence of different magnetic insulators on the magnetic proximity effect induced in graphene. Four different magnetic insulators are considered: two ferromagnetic europium chalcogenides namely EuO and EuS and two ferrimagnetic insulators yttrium iron garnet (YIG) and cobalt ferrite (CFO). The obtained exchange-splitting varies from tens to hundreds of meV. We also find an electron doping induced by YIG and europium chalcogenides substrates, that shift the Fermi level up to 0.78 eV and 1.3 eV respectively, whereas hole doping up to 0.5 eV is generated by CFO. Furthermore, we study the variation of the extracted exchange and tight binding parameters as a function of the EuO and EuS thicknesses. We show that those parameters are robust to thickness variation such that a single monolayer of magnetic insulator can induce a large magnetic proximity effect on graphene. Those findings pave the way towards possible engineering of graphene spin-gating by proximity effect especially in view of recent experiments advancement.
Time- and angle-resolved photoemission measurements on two doped graphene samples displaying different doping levels reveal remarkable differences in the ultrafast dynamics of the hot carriers in the Dirac cone. In the more strongly ($n$-)doped graph ene, we observe larger carrier multiplication factors ($>$ 3) and a significantly faster phonon-mediated cooling of the carriers back to equilibrium compared to in the less ($p$-)doped graphene. These results suggest that a careful tuning of the doping level allows for an effective manipulation of graphenes dynamical response to a photoexcitation.
We use a tight-binding model and the random-phase approximation to study the Coulomb excitations in simple-hexagonal-stacking multilayer graphene and discuss the field effects. The calculation results include the energy bands, the response functions, and the plasmon dispersions. A perpendicular electric field is predicted to induce significant charge transfer and thus capable of manipulating the energy, intensity, and the number of plasmon modes. This could be further validated by inelastic light scattering or electron-energy-loss spectroscopy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا