ﻻ يوجد ملخص باللغة العربية
There are a number of theoretical proposals based on strain engineering of graphene and other two-dimensional materials, however purely mechanical control of strain fields in these systems has remained a major challenge. The two approaches mostly used so far either couple the electrical and mechanical properties of the system simultaneously or introduce some unwanted disturbances due to the substrate. Here, we report on silicon micro-machined comb-drive actuators to controllably and reproducibly induce strain in a suspended graphene sheet, in an entirely mechanical way. We use spatially resolved confocal Raman spectroscopy to quantify the induced strain, and we show that different strain fields can be obtained by engineering the clamping geometry, including tunable strain gradients of up to 1.4 %/$mu$m. Our approach also allows for multiple axis straining and is equally applicable to other two-dimensional materials, opening the door to an investigating their mechanical and electromechanical properties. Our measurements also clearly identify defects at the edges of a graphene sheet as being weak spots responsible for its mechanical failure.
Spintronic devices based on antiferromagnetic (AFM) materials hold the promise of fast switching speeds and robustness against magnetic fields. Different device concepts have been predicted and experimentally demonstrated, such as low-temperature AFM
As device miniaturization approaches the atomic limit, it becomes highly desirable to exploit novel paradigms for tailoring electronic structures and carrier dynamics in materials. Elastic strain can in principle be applied to achieve reversible and
We report a systematic first-principles investigation of the influence of different magnetic insulators on the magnetic proximity effect induced in graphene. Four different magnetic insulators are considered: two ferromagnetic europium chalcogenides
Time- and angle-resolved photoemission measurements on two doped graphene samples displaying different doping levels reveal remarkable differences in the ultrafast dynamics of the hot carriers in the Dirac cone. In the more strongly ($n$-)doped graph
We use a tight-binding model and the random-phase approximation to study the Coulomb excitations in simple-hexagonal-stacking multilayer graphene and discuss the field effects. The calculation results include the energy bands, the response functions,