ترغب بنشر مسار تعليمي؟ اضغط هنا

Mechanically modulated emission spectra and blockade of polaritons

209   0   0.0 ( 0 )
 نشر من قبل Sai-Nan Huai
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a hybrid semiconductor-optomechanical system, which consists of a cavity with an oscillating mirror made by semiconducting materials or with a semiconducting membrane inside. The cavity photons and the excitons in the oscillating mirror or semiconducting membrane form into polaritons. And correspondingly, the optomechanical interaction between the cavity photons and the mirror or membrane is changed into the polariton-mechanical interaction. We theoretically study the eigenenergies and eigenfunctions of this tripartite hybrid system with the generalized rotating-wave approximation. We show that the emission spectrum of polariton mode is modulated by the mechanical resonator. We also study the mechanical effect on the statistical properties of the polariton when the cavity is driven by a weak classical field. This work provides a detailed description of the rich nonlinearity owing to the competition between parametric coupling and three-wave mixing interaction concerning the polariton modes and the phonon mode. It also offers a way to operate the photons, phonons and excitons, e.g., detect the properties of mechanical resonator through the fine spectra of the polaritons or control the transmission of light in the integrated semiconducting-optomechanical platform.

قيم البحث

اقرأ أيضاً

We study interactions between polaritons, arising when photons strongly couple to collective excitations in an array of two-level atoms trapped in an optical lattice inside a cavity. We consider two types of interactions between atoms: Dipolar forces and atomic saturability, which ranges from hard-core repulsion to Rydberg blockade. We show that, in spite of the underlying repulsion in the subsystem of atomic excitations, saturability induces a broadband bunching of photons for two-polariton scattering states. We interpret this bunching as a result of interference, and trace it back to the mismatch of the quantization volumes for atomic excitations and photons. We examine also bound bipolaritonic states: These include states created by dipolar forces, as well as a gap bipolariton, which forms solely due to saturability effects in the atomic transition. Both types of bound states exhibit strong bunching in the photonic component. We discuss the dependence of bunching on experimentally relevant parameters.
We investigate the sideband spectra of a driven nonlinear mode with its eigenfrequency being modulated at a low frequency (< 1 kHz). This additional parametric modulation leads to prominent antiresonance lineshapes in the sideband spectra, which can be controlled through the vibration state of the driven mode. We also establish a direct connection between the antiresonance frequency and the squeezing of thermal fluctuation in the system. Our work not only provides a simple and robust method for squeezing characterization but also opens a new possibility toward sideband applications.
We study a 2D system of trion-polaritons at the quantum level and demonstrate that for monolayer semiconductors they can exhibit a strongly nonlinear optical response. The effect is due to the composite nature of trion-based excitations resulting in their nontrivial quantum statistical properties, and enhanced phase space filling effects. We present the full quantum theory to describe the statistics of trion-polaritons, and demonstrate that the associated nonlinearity persists at the level of few quanta, where two qualitatively different regimes of photon antibunching are present for weak and strong single photon-trion coupling. We find that single photon emission from trion-polaritons becomes experimentally feasible in state-of-the-art transition metal dichalcogenide (TMD) setups. This can foster the development of quantum polaritonics using 2D monolayers as a material platform.
We study theoretically and experimentally the competing blockade and anti-blockade effects induced by spontaneously generated contaminant Rydberg atoms in driven Rydberg systems. These contaminant atoms provide a source of strong dipole-dipole intera ctions and play a crucial role in the systems behavior. We study this problem theoretically using two different approaches. The first is a cumulant expansion approximation, in which we ignore third-order and higher connected correlations. Using this approach for the case of resonant drive, a many-body blockade radius picture arises, and we find qualitative agreement with previous experimental results. We further predict that as the atomic density is increased, the Rydberg populations dependence on Rabi frequency will transition from quadratic to linear dependence at lower Rabi frequencies. We study this behavior experimentally by observing this crossover at two different atomic densities. We confirm that the larger density system has a smaller crossover Rabi frequency than the smaller density system. The second theoretical approach is a set of phenomenological inhomogeneous rate equations. We compare the results of our rate equation model to the experimental observations in [E. A. Goldschmidt, et al., PRL 116, 113001 (2016)] and find that these rate equations provide quantitatively good scaling behavior of the steady-state Rydberg population for both resonant and off-resonant drive.
Neutral atom array serves as an ideal platform to study the quantum logic gates, where intense efforts have been devoted to improve the two-qubit gate fidelity. We report our recent findings in constructing a different type of two-qubit controlled-PH ASE quantum gate protocol with neutral atoms enabled by Rydberg blockade, which aims at both robustness and high-fidelity. It relies upon modulated driving pulse with specially tailored smooth waveform to gain appropriate phase accumulations for quantum gates. The major features include finishing gate operation within a single pulse, not necessarily requiring individual site addressing, not sensitive to the exact value of blockade shift while suppressing population leakage error and rotation error. We anticipate its fidelity to be reasonably high under realistic considerations for errors such as atomic motion, laser power fluctuation, power imbalance, spontaneous emission and so on. Moreover, we hope that such type of protocol may inspire future improvements in quantum gate designs for other categories of qubit platforms and new applications in other areas of quantum optimal control.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا