ترغب بنشر مسار تعليمي؟ اضغط هنا

Debiasing Multilingual Word Embeddings: A Case Study of Three Indian Languages

114   0   0.0 ( 0 )
 نشر من قبل Ayush Suhane
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we advance the current state-of-the-art method for debiasing monolingual word embeddings so as to generalize well in a multilingual setting. We consider different methods to quantify bias and different debiasing approaches for monolingual as well as multilingual settings. We demonstrate the significance of our bias-mitigation approach on downstream NLP applications. Our proposed methods establish the state-of-the-art performance for debiasing multilingual embeddings for three Indian languages - Hindi, Bengali, and Telugu in addition to English. We believe that our work will open up new opportunities in building unbiased downstream NLP applications that are inherently dependent on the quality of the word embeddings used.



قيم البحث

اقرأ أيضاً

We propose a multilingual model to recognize Big Five Personality traits from text data in four different languages: English, Spanish, Dutch and Italian. Our analysis shows that words having a similar semantic meaning in different languages do not ne cessarily correspond to the same personality traits. Therefore, we propose a personality alignment method, GlobalTrait, which has a mapping for each trait from the source language to the target language (English), such that words that correlate positively to each trait are close together in the multilingual vector space. Using these aligned embeddings for training, we can transfer personality related training features from high-resource languages such as English to other low-resource languages, and get better multilingual results, when compared to using simple monolingual and unaligned multilingual embeddings. We achieve an average F-score increase (across all three languages except English) from 65 to 73.4 (+8.4), when comparing our monolingual model to multilingual using CNN with personality aligned embeddings. We also show relatively good performance in the regression tasks, and better classification results when evaluating our model on a separate Chinese dataset.
Acoustic word embeddings (AWEs) are fixed-dimensional representations of variable-length speech segments. For zero-resource languages where labelled data is not available, one AWE approach is to use unsupervised autoencoder-based recurrent models. An other recent approach is to use multilingual transfer: a supervised AWE model is trained on several well-resourced languages and then applied to an unseen zero-resource language. We consider how a recent contrastive learning loss can be used in both the purely unsupervised and multilingual transfer settings. Firstly, we show that terms from an unsupervised term discovery system can be used for contrastive self-supervision, resulting in improvements over previous unsupervised monolingual AWE models. Secondly, we consider how multilingual AWE models can be adapted to a specific zero-resource language using discovered terms. We find that self-supervised contrastive adaptation outperforms adapted multilingual correspondence autoencoder and Siamese AWE models, giving the best overall results in a word discrimination task on six zero-resource languages.
Recently, there is increasing interest in multilingual automatic speech recognition (ASR) where a speech recognition system caters to multiple low resource languages by taking advantage of low amounts of labeled corpora in multiple languages. With mu ltilingualism becoming common in todays world, there has been increasing interest in code-switching ASR as well. In code-switching, multiple languages are freely interchanged within a single sentence or between sentences. The success of low-resource multilingual and code-switching ASR often depends on the variety of languages in terms of their acoustics, linguistic characteristics as well as the amount of data available and how these are carefully considered in building the ASR system. In this challenge, we would like to focus on building multilingual and code-switching ASR systems through two different subtasks related to a total of seven Indian languages, namely Hindi, Marathi, Odia, Tamil, Telugu, Gujarati and Bengali. For this purpose, we provide a total of ~600 hours of transcribed speech data, comprising train and test sets, in these languages including two code-switched language pairs, Hindi-English and Bengali-English. We also provide a baseline recipe for both the tasks with a WER of 30.73% and 32.45% on the test sets of multilingual and code-switching subtasks, respectively.
There has been significant interest recently in learning multilingual word embeddings -- in which semantically similar words across languages have similar embeddings. State-of-the-art approaches have relied on expensive labeled data, which is unavail able for low-resource languages, or have involved post-hoc unification of monolingual embeddings. In the present paper, we investigate the efficacy of multilingual embeddings learned from weakly-supervised image-text data. In particular, we propose methods for learning multilingual embeddings using image-text data, by enforcing similarity between the representations of the image and that of the text. Our experiments reveal that even without using any expensive labeled data, a bag-of-words-based embedding model trained on image-text data achieves performance comparable to the state-of-the-art on crosslingual semantic similarity tasks.
Acoustic word embedding models map variable duration speech segments to fixed dimensional vectors, enabling efficient speech search and discovery. Previous work explored how embeddings can be obtained in zero-resource settings where no labelled data is available in the target language. The current best approach uses transfer learning: a single supervised multilingual model is trained using labelled data from multiple well-resourced languages and then applied to a target zero-resource language (without fine-tuning). However, it is still unclear how the specific choice of training languages affect downstream performance. Concretely, here we ask whether it is beneficial to use training languages related to the target. Using data from eleven languages spoken in Southern Africa, we experiment with adding data from different language families while controlling for the amount of data per language. In word discrimination and query-by-example search evaluations, we show that training on languages from the same family gives large improvements. Through finer-grained analysis, we show that training on even just a single related language gives the largest gain. We also find that adding data from unrelated languages generally doesnt hurt performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا