ﻻ يوجد ملخص باللغة العربية
Acoustic word embedding models map variable duration speech segments to fixed dimensional vectors, enabling efficient speech search and discovery. Previous work explored how embeddings can be obtained in zero-resource settings where no labelled data is available in the target language. The current best approach uses transfer learning: a single supervised multilingual model is trained using labelled data from multiple well-resourced languages and then applied to a target zero-resource language (without fine-tuning). However, it is still unclear how the specific choice of training languages affect downstream performance. Concretely, here we ask whether it is beneficial to use training languages related to the target. Using data from eleven languages spoken in Southern Africa, we experiment with adding data from different language families while controlling for the amount of data per language. In word discrimination and query-by-example search evaluations, we show that training on languages from the same family gives large improvements. Through finer-grained analysis, we show that training on even just a single related language gives the largest gain. We also find that adding data from unrelated languages generally doesnt hurt performance.
Acoustic word embeddings (AWEs) are fixed-dimensional representations of variable-length speech segments. For zero-resource languages where labelled data is not available, one AWE approach is to use unsupervised autoencoder-based recurrent models. An
End-to-end acoustic-to-word speech recognition models have recently gained popularity because they are easy to train, scale well to large amounts of training data, and do not require a lexicon. In addition, word models may also be easier to integrate
Several variants of deep neural networks have been successfully employed for building parametric models that project variable-duration spoken word segments onto fixed-size vector representations, or acoustic word embeddings (AWEs). However, it remain
We use the multilingual OSCAR corpus, extracted from Common Crawl via language classification, filtering and cleaning, to train monolingual contextualized word embeddings (ELMo) for five mid-resource languages. We then compare the performance of OSCA
In this paper, we advance the current state-of-the-art method for debiasing monolingual word embeddings so as to generalize well in a multilingual setting. We consider different methods to quantify bias and different debiasing approaches for monoling