ﻻ يوجد ملخص باللغة العربية
In this article we explicitly describe irreducible trinomials X^3-aX+b which gives all the cyclic cubic extensions of Q. In doing so, we construct all integral points (x,y,z) with GCD(y,z)=1, of the curves X^2+3Y^2 = 4DZ^3 and X^2+27Y^2=4DZ^3 as D varies over cube-free positive integers. We parametrise these points using well known parametrisation of integral points (x,y,z) of the curve X^2+3Y^2=4Z^3 with GCD(y,z)=1.
We prove a general stability theorem for $p$-class groups of number fields along relative cyclic extensions of degree $p^2$, which is a generalization of a finite-extension version of Fukudas theorem by Li, Ouyang, Xu and Zhang. As an application, we
We consider the Galois group $G_2(K)$ of the maximal unramified $2$-extension of $K$ where $K/mathbb{Q}$ is cyclic of degree $3$. We also consider the group $G^+_2(K)$ where ramification is allowed at infinity. In the spirit of the Cohen-Lenstra heur
- Let p be a prime number and K an algebraic number field. What is the arithmetic structure of Galois extensions L/K having p-adic analytic Galois group $Gamma$ = Gal(L/K)? The celebrated Tame Fontaine-Mazur conjecture predicts that such extensions a
We show that there is essentially a unique elliptic curve $E$ defined over a cubic Galois extension $K$ of $mathbb Q$ with a $K$-rational point of order 13 and such that $E$ is not defined over $mathbb Q$.
We describe and implement an algorithm to find all post-critically finite (PCF) cubic polynomials defined over $mathbb{Q}$, up to conjugacy over $text{PGL}_2(bar{mathbb{Q}})$. We describe normal forms that classify equivalence classes of cubic polyno