ترغب بنشر مسار تعليمي؟ اضغط هنا

Heuristics for $2$-class Towers of Cyclic Cubic Fields

66   0   0.0 ( 0 )
 نشر من قبل Michael Bush
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the Galois group $G_2(K)$ of the maximal unramified $2$-extension of $K$ where $K/mathbb{Q}$ is cyclic of degree $3$. We also consider the group $G^+_2(K)$ where ramification is allowed at infinity. In the spirit of the Cohen-Lenstra heuristics, we identify certain types of pro-$2$ group as the natural spaces where $G_2(K)$ and $G^+_2(K)$ live when the $2$-class group of $K$ is $2$-generated. While we do not have a theoretical scheme for assigning probabilities, we present data and make some observations and conjectures about the distribution of such groups.



قيم البحث

اقرأ أيضاً

In this paper, we study simple cubic fields in the function field setting, and also generalize the notion of a set of exceptional units to cubic function fields, namely the notion of $k$-exceptional units. We give a simple proof that the Galois simpl e cubic function fields are the immediate analog of Shanks simplest cubic number fields. In addition to computing the invariants, including a formula for the regulator, we compute the class numbers of the Galois simple cubic function fields over $mathbb{F}_{5}$ and $mathbb{F}_{7}$ using truncated Euler products. Finally, as an additional application, we determine all Galois simple cubic function fields with class number one, subject to a mild restriction.
In this article we explicitly describe irreducible trinomials X^3-aX+b which gives all the cyclic cubic extensions of Q. In doing so, we construct all integral points (x,y,z) with GCD(y,z)=1, of the curves X^2+3Y^2 = 4DZ^3 and X^2+27Y^2=4DZ^3 as D va ries over cube-free positive integers. We parametrise these points using well known parametrisation of integral points (x,y,z) of the curve X^2+3Y^2=4Z^3 with GCD(y,z)=1.
128 - Igor Nikolaev 2021
It is shown that the real class field towers are always finite. The proof is based on Castelnuovos theory of the algebraic surfaces and a functor from such surfaces to the Etesi C*-algebras.
We present computational results on the divisor class number and the regulator of a cubic function field over a large base field. The underlying method is based on approximations of the Euler product representation of the zeta function of such a fiel d. We give details on the implementation for purely cubic function fields of signatures $(3,1)$ and $(1, 1; 1, 2)$, operating in the ideal class group and infrastructure of the function field, respectively. Our implementation provides numerical evidence of the computational effectiveness of this algorithm. With the exception of special cases, such as purely cubic function fields defined by superelliptic curves, the examples provided are the largest divisor class numbers and regulators ever computed for a cubic function field over a large prime field. The ideas underlying the optimization of the class number algorithm can in turn be used to analyze the distribution of the zeros of the function fields zeta function. We provide a variety of data on a certain distribution of the divisor class number that verify heuristics by Katz and Sarnak on the distribution of the zeroes of the zeta function.
We show that there is essentially a unique elliptic curve $E$ defined over a cubic Galois extension $K$ of $mathbb Q$ with a $K$-rational point of order 13 and such that $E$ is not defined over $mathbb Q$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا