ترغب بنشر مسار تعليمي؟ اضغط هنا

Secure Aerial Surveillance using Split Learning

77   0   0.0 ( 0 )
 نشر من قبل Soohyun Park
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Personal monitoring devices such as cyclist helmet cameras to record accidents or dash cams to catch collisions have proliferated, with more companies producing smaller and compact recording gadgets. As these devices are becoming a part of citizens everyday arsenal, concerns over the residents privacy are progressing. Therefore, this paper presents SASSL, a secure aerial surveillance drone using split learning to classify whether there is a presence of a fire on the streets. This innovative split learning method transfers CCTV footage captured with a drone to a nearby server to run a deep neural network to detect a fires presence in real-time without exposing the original data. We devise a scenario where surveillance UAVs roam around the suburb, recording any unnatural behavior. The UAV can process the recordings through its on-mobile deep neural network system or transfer the information to a server. Due to the resource limitations of mobile UAVs, the UAV does not have the capacity to run an entire deep neural network on its own. This is where the split learning method comes in handy. The UAV runs the deep neural network only up to the first hidden layer and sends only the feature map to the cloud server, where the rest of the deep neural network is processed. By ensuring that the learning process is divided between the UAV and the server, the privacy of raw data is secured while the UAV does not overexert its minimal resources.



قيم البحث

اقرأ أيضاً

In this paper, we propose a novel deep Q-network (DQN)-based edge selection algorithm designed specifically for real-time surveillance in unmanned aerial vehicle (UAV) networks. The proposed algorithm is designed under the consideration of delay, ene rgy, and overflow as optimizations to ensure real-time properties while striking a balance for other environment-related parameters. The merit of the proposed algorithm is verified via simulation-based performance evaluation.
Connected societies require reliable measures to assure the safety, privacy, and security of members. Public safety technology has made fundamental improvements since the first generation of surveillance cameras were introduced, which aims to reduce the role of observer agents so that no abnormality goes unnoticed. While the edge computing paradigm promises solutions to address the shortcomings of cloud computing, e.g., the extra communication delay and network security issues, it also introduces new challenges. One of the main concerns is the limited computing power at the edge to meet the on-site dynamic data processing. In this paper, a Lightweight IoT (Internet of Things) based Smart Public Safety (LISPS) framework is proposed on top of microservices architecture. As a computing hierarchy at the edge, the LISPS system possesses high flexibility in the design process, loose coupling to add new services or update existing functions without interrupting the normal operations, and efficient power balancing. A real-world public safety monitoring scenario is selected to verify the effectiveness of LISPS, which detects, tracks human objects and identify suspicious activities. The experimental results demonstrate the feasibility of the approach.
Recently, deep neural networks have been outperforming conventional machine learning algorithms in many computer vision-related tasks. However, it is not computationally acceptable to implement these models on mobile and IoT devices and the majority of devices are harnessing the cloud computing methodology in which outstanding deep learning models are responsible for analyzing the data on the server. This can bring the communication cost for the devices and make the whole system useless in those times where the communication is not available. In this paper, a new framework for deploying on IoT devices has been proposed which can take advantage of both the cloud and the on-device models by extracting the meta-information from each samples classification result and evaluating the classifications performance for the necessity of sending the sample to the server. Experimental results show that only 40 percent of the test data should be sent to the server using this technique and the overall accuracy of the framework is 92 percent which improves the accuracy of both client and server models.
In the fifth-generation (5G) networks and the beyond, communication latency and network bandwidth will be no more bottleneck to mobile users. Thus, almost every mobile device can participate in the distributed learning. That is, the availability issu e of distributed learning can be eliminated. However, the model safety will become a challenge. This is because the distributed learning system is prone to suffering from byzantine attacks during the stages of updating model parameters and aggregating gradients amongst multiple learning participants. Therefore, to provide the byzantine-resilience for distributed learning in 5G era, this article proposes a secure computing framework based on the sharding-technique of blockchain, namely PIRATE. A case-study shows how the proposed PIRATE contributes to the distributed learning. Finally, we also envision some open issues and challenges based on the proposed byzantine-resilient learning framework.
The growing size of modern datasets necessitates splitting a large scale computation into smaller computations and operate in a distributed manner. Adversaries in a distributed system deliberately send erroneous data in order to affect the computatio n for their benefit. Boolean functions are the key components of many applications, e.g., verification functions in blockchain systems and design of cryptographic algorithms. We consider the problem of computing a Boolean function in a distributed computing system with particular focus on emph{security against Byzantine workers}. Any Boolean function can be modeled as a multivariate polynomial with high degree in general. However, the security threshold (i.e., the maximum number of adversarial workers can be tolerated such that the correct results can be obtained) provided by the recent proposed Lagrange Coded Computing (LCC) can be extremely low if the degree of the polynomial is high. We propose three different schemes called emph{coded Algebraic normal form (ANF)}, emph{coded Disjunctive normal form (DNF)} and emph{coded polynomial threshold function (PTF)}. The key idea of the proposed schemes is to model it as the concatenation of some low-degree polynomials and threshold functions. In terms of the security threshold, we show that the proposed coded ANF and coded DNF are optimal by providing a matching outer bound.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا