ﻻ يوجد ملخص باللغة العربية
In the fifth-generation (5G) networks and the beyond, communication latency and network bandwidth will be no more bottleneck to mobile users. Thus, almost every mobile device can participate in the distributed learning. That is, the availability issue of distributed learning can be eliminated. However, the model safety will become a challenge. This is because the distributed learning system is prone to suffering from byzantine attacks during the stages of updating model parameters and aggregating gradients amongst multiple learning participants. Therefore, to provide the byzantine-resilience for distributed learning in 5G era, this article proposes a secure computing framework based on the sharding-technique of blockchain, namely PIRATE. A case-study shows how the proposed PIRATE contributes to the distributed learning. Finally, we also envision some open issues and challenges based on the proposed byzantine-resilient learning framework.
In this paper, we propose FedChain, a novel framework for federated-blockchain systems, to enable effective transferring of tokens between different blockchain networks. Particularly, we first introduce a federated-blockchain system together with a c
Policy decisions are increasingly dependent on the outcomes of simulations and/or machine learning models. The ability to share and interact with these outcomes is relevant across multiple fields and is especially critical in the disease modeling com
Blockchain protocols differ in fundamental ways, including the mechanics of selecting users to produce blocks (e.g., proof-of-work vs. proof-of-stake) and the method to establish consensus (e.g., longest chain rules vs. Byzantine fault-tolerant (BFT)
Device failure detection is one of most essential problems in industrial internet of things (IIoT). However, in conventional IIoT device failure detection, client devices need to upload raw data to the central server for model training, which might l
The emerging Internet of Things (IoT) is facing significant scalability and security challenges. On the one hand, IoT devices are weak and need external assistance. Edge computing provides a promising direction addressing the deficiency of centralize