ﻻ يوجد ملخص باللغة العربية
Ageing of lithium-ion batteries results in irreversible reduction in performance. Intrinsic variability between cells, caused by manufacturing differences, occurs throughout life and increases with age. Researchers need to know the minimum number of cells they should test to give an accurate representation of population variability, since testing many cells is expensive. In this paper, empirical capacity versus time ageing models were fitted to various degradation datasets for commercially available cells assuming the model parameters could be drawn from a larger population distribution. Using a hierarchical Bayesian approach, we estimated the number of cells required to be tested. Depending on the complexity, ageing models with 1, 2 or 3 parameters respectively required data from at least 9, 11 or 13 cells for a consistent fit. This implies researchers will need to test at least these numbers of cells at each test point in their experiment to capture manufacturing variability.
As a concrete setting where stochastic partial differential equations (SPDEs) are able to model real phenomena, we propose a stochastic Meinhardt model for cell repolarisation and study how parameter estimation techniques developed for simple linear
Cell detection and counting in the image-based ELISPOT and Fluorospot immunoassays is considered a bottleneck. The task has remained hard to automatize, and biomedical researchers often have to rely on results that are not accurate. Previously propos
Mapping of the forces on biomolecules in cell membranes has spurred the development of effective labels, e.g. organic fluorophores and nanoparticles, to track trajectories of single biomolecules. Standard methods use particular statistics, namely the
There are many mathematical models of biochemical cell signaling pathways that contain a large number of elements (species and reactions). This is sometimes a big issue for identifying critical model elements and describing the model dynamics. Thus,
Cells grown in culture act as a model system for analyzing the effects of anticancer compounds, which may affect cell behavior in a cell cycle position-dependent manner. Cell synchronization techniques have been generally employed to minimize the var