ﻻ يوجد ملخص باللغة العربية
There are many mathematical models of biochemical cell signaling pathways that contain a large number of elements (species and reactions). This is sometimes a big issue for identifying critical model elements and describing the model dynamics. Thus, techniques of model reduction can be used as a mathematical tool in order to minimize the number of variables and parameters. In this thesis, we review some well-known methods of model reduction for cell signaling pathways. We have also developed some approaches that provide us a great step forward in model reduction. The techniques are quasi steady state approximation (QSSA), quasi equilibrium approximation (QEA), lumping of species and entropy production analysis. They are applied on protein translation pathways with microRNA mechanisms, chemical reaction networks, extracellular signal regulated kinase (ERK) pathways, NFkB signal transduction pathways, elongation factors EFTu and EFTs signaling pathways and Dihydrofolate reductase (DHFR) pathways. The main aim of this thesis is to reduce the complex cell signaling pathway models. This provides one a better understanding of the dynamics of such models and gives an accurate approximate solution. Results show that there is a good agreement between the original models and the simplified models.
Signaling pathways serve to communicate information about extracellular conditions into the cell, to both the nucleus and cytoplasmic processes to control cell responses. Genetic mutations in signaling network components are frequently associated wit
We present herein an extension of an algebraic statistical method for inferring biochemical reaction networks from experimental data, proposed recently in [3]. This extension allows us to analyze reaction networks that are not necessarily full-dimens
Transforming Growth Factor-beta (TGF-beta) signalling is an important regulator of cellular growth and differentiation. The principal intracellular mediators of TGF-beta signalling are the Smad proteins, which upon TGF-beta stimulation accumulate in
Anaerobic glycolysis in yeast perturbed by the reduction of xenobiotic ketones is studied numerically in two models which possess the same topology but different levels of complexity. By comparing both models predictions for concentrations and fluxes
We introduce a minimal model for the evolution of functional protein-interaction networks using a sequence-based mutational algorithm, and apply the model to study neutral drift in networks that yield oscillatory dynamics. Starting with a functional