ﻻ يوجد ملخص باللغة العربية
Mapping of the forces on biomolecules in cell membranes has spurred the development of effective labels, e.g. organic fluorophores and nanoparticles, to track trajectories of single biomolecules. Standard methods use particular statistics, namely the mean square displacement, to analyze the underlying dynamics. Here, we introduce general inference methods to fully exploit information in the experimental trajectories, providing sharp estimates of the forces and the diffusion coefficients in membrane microdomains. Rapid and reliable convergence of the inference scheme is demonstrated on trajectories generated numerically. The method is then applied to infer forces and potentials acting on the receptor of the $epsilon$-toxin labeled by lanthanide-ion nanoparticles. Our scheme is applicable to any labeled biomolecule and results show show its general relevance for membrane compartmentation.
Gaining access to the cell interior is fundamental for many applications, such as electrical recording, drug and biomolecular delivery. A very promising technique consists of culturing cells on nano/micro pillars. The tight adhesion and high local de
In this work, we study in detail the distribution of stochastic forces generated by the molecular motors activity, in the actin cortex of pre-muscular cells. By combining active and passive rheology experiments, performed on the same micro-bead bound
Specific protein-protein interactions are crucial in the cell, both to ensure the formation and stability of multi-protein complexes, and to enable signal transduction in various pathways. Functional interactions between proteins result in coevolutio
Membrane tubes are important elements for living cells to organize many functions. Experiments have found that membrane tube can be extracted from giant lipid vesicles by a group of kinesin. How these motors cooperate in extracting the fluid-like mem
In this paper we argue that, in addition to electrical and chemical signals propagating in the neurons of the brain, signal propagation takes place in the form of biophoton production. This statement is supported by recent experimental confirmation o