ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational Self-Lensing in Populations of Massive Black Hole Binaries

87   0   0.0 ( 0 )
 نشر من قبل Luke Zoltan Kelley
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The community may be on the verge of detecting low-frequency gravitational waves from massive black hole binaries (MBHBs), but no examples of binary active galactic nuclei (AGN) have been confirmed. Because MBHBs are intrinsically rare, the most promising detection methods utilize photometric data from all-sky surveys. Recently DOrazio & Di Stefano 2018 (arXiv:1707.02335) suggested gravitational self-lensing as a method of detecting AGN in close separation binaries. In this study we calculate the detectability of lensing signatures in realistic populations of simulated MBHBs. Within our model assumptions, we find that VROs LSST should be able to detect 10s to 100s of self-lensing binaries, with the rate uncertainty depending primarily on the orientation of AGN disks relative to their binary orbits. Roughly a quarter of lensing detectable systems should also show detectable Doppler boosting signatures. If AGN disks tend to be aligned with the orbit, lensing signatures are very nearly achromatic, while in misaligned configurations the bluer optical bands are lensed more than redder ones. Whether substantial obscuring material (e.g.~a dusty torus) will be present in close binaries remains uncertain, but our estimates suggest that a substantial fraction of systems would still be observable in this case.



قيم البحث

اقرأ أيضاً

Massive black hole binaries are predicted to form during the hierarchical assembly of cosmic structures and will represent the loudest sources of low-frequency gravitational waves (GWs) detectable by present and forthcoming GW experiments. Before ent ering the GW-driven regime, their evolution is driven by the interaction with the surrounding stars and gas. While stellar interactions are found to always shrink the binary, recent studies predict the possibility of binary outspiral mediated by the presence of a gaseous disk, which could endlessly delay the coalescence and impact the merger rates of massive binaries. Here we implement a semi-analytical treatment that follows the binary evolution under the combined effect of stars and gas. We find that binaries may outspiral only if they accrete near or above their Eddington limit and only until their separation reaches the gaseous disk self-gravitating radius. Even in case of an outspiral, the binary eventually reaches a large enough mass for GW to take over and drive it to coalescence. The combined action of stellar hardening, mass growth and GW-driven inspiral brings binaries to coalescence in few hundreds Myr at most, implying that gas-driven expansion will not severely affect the detection prospects of upcoming GW facilities.
Focusing on the remnant black holes after merging binary black holes, we show that ringdown gravitational waves of Population III binary black holes mergers can be detected with the rate of $5.9-500~{rm events~yr^{-1}}~({rm SFR_p}/ (10^{-2.5}~M_odot~ {rm yr^{-1}~Mpc^{-3}})) cdot ({rm [f_b/(1+f_b)]/0.33})$ for various parameters and functions. This rate is estimated for the events with SNR$>8$ for the second generation gravitational wave detectors such as KAGRA. Here, ${rm SFR_p}$ and ${rm f_b}$ are the peak value of the Population III star formation rate and the fraction of binaries, respectively. When we consider only the events with SNR$>35$, the event rate becomes $0.046-4.21~{rm events~yr^{-1}}~({rm SFR_p}/ (10^{-2.5}~M_odot~{rm yr^{-1}~Mpc^{-3}})) cdot ({rm [f_b/(1+f_b)]/0.33})$. This suggest that for remnant black holes spin $q_f>0.95$ we have the event rate with SNR$>35$ less than $0.037~{rm events~yr^{-1}}~({rm SFR_p}/ (10^{-2.5}~M_odot~{rm yr^{-1}~Mpc^{-3}})) cdot ({rm [f_b/(1+f_b)]/0.33})$, while it is $3-30~{rm events~yr^{-1}}~({rm SFR_p}/ (10^{-2.5}~M_odot~{rm yr^{-1}~Mpc^{-3}})) cdot ({rm [f_b/(1+f_b)]/0.33})$ for the third generation detectors such as Einstein Telescope. If we detect many Population III binary black holes merger, it may be possible to constrain the Population III binary evolution paths not only by the mass distribution but also by the spin distribution.
Gravitational waves (GWs) in the nano-hertz band are great tools for understanding the cosmological evolution of supermassive black holes (SMBHs) in galactic nuclei. We consider SMBH binaries in high-$z$ ultra-luminous infrared galaxies (ULIRGs) as s ources of a stochastic GW background (GWB). ULIRGs are likely associated with gas-rich galaxy mergers containing SMBHs that possibly occur at most once in the life of galaxies, unlike multiple dry mergers at low redshift. Adopting a well-established sample of ULIRGs, we study the properties of the GWB due to coalescing binary SMBHs in these galaxies. Since the ULIRG population peaks at $z>1.5$, the amplitude of the GWB is not affected even if BH mergers are delayed by as long as $sim $ 10 Gyrs. Despite the rarity of the high-$z$ ULIRGs, we find a tension with the upper limits from Pulsar Timing Array (PTA) experiments. This result suggests that if a fraction $f_{rm m,gal}$ of ULIRGs are associated with SMBH binaries, then no more than $20 f_{rm m,gal}(lambda_{rm Edd}/0.3)^{5/3}(t_{rm life}/30~{rm Myr})~%$ of the binary SMBHs in ULIRGs can merge within a Hubble time, for plausible values of the Eddington ratio of ULIRGs ($lambda_{rm Edd}$) and their lifetime ($t_{rm life}$).
In this article, we present an overview of the new developments in problems of the plasma influence on the effects of gravitational lensing, complemented by pieces of new material and relevant discussions. Deflection of light in the presence of gravi ty and plasma is determined by a complex combination of various physical phenomena: gravity, dispersion, refraction. In particular, the gravitational deflection itself, in a homogeneous plasma without refraction, differs from the vacuum one and depends on the frequency of the photon. In an inhomogeneous plasma, chromatic refraction also takes place. We describe chromatic effects in strong lens systems including a shift of angular position of image and a change in magnification. We also investigate high-order images that arise when lensing on a black hole surrounded by homogeneous plasma. The recent results of analytical studies of the effect of plasma on the shadow of the Schwarzschild and Kerr black holes are presented.
The formation of compact stellar-mass binaries is a difficult, but interesting problem in astrophysics. There are two main formation channels: In the field via binary star evolution, or in dense stellar systems via dynamical interactions. The Laser I nterferometer Gravitational-Wave Observatory (LIGO) has detected black hole binaries (BHBs) via their gravitational radiation. These detections provide us with information about the physical parameters of the system. It has been claimed that when the Laser Interferometer Space Antenna (LISA) is operating, the joint observation of these binaries with LIGO will allow us to derive the channels that lead to their formation. However, we show that for BHBs in dense stellar systems dynamical interactions could lead to high eccentricities such that a fraction of the relativistic mergers are not audible to LISA. A non-detection by LISA puts a lower limit of about $0.005$ on the eccentricity of a BHB entering the LIGO band. On the other hand, a deci-Hertz observatory, like DECIGO or Tian Qin, would significantly enhance the chances of a joint detection, and shed light on the formation channels of these binaries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا