ﻻ يوجد ملخص باللغة العربية
Massive black hole binaries are predicted to form during the hierarchical assembly of cosmic structures and will represent the loudest sources of low-frequency gravitational waves (GWs) detectable by present and forthcoming GW experiments. Before entering the GW-driven regime, their evolution is driven by the interaction with the surrounding stars and gas. While stellar interactions are found to always shrink the binary, recent studies predict the possibility of binary outspiral mediated by the presence of a gaseous disk, which could endlessly delay the coalescence and impact the merger rates of massive binaries. Here we implement a semi-analytical treatment that follows the binary evolution under the combined effect of stars and gas. We find that binaries may outspiral only if they accrete near or above their Eddington limit and only until their separation reaches the gaseous disk self-gravitating radius. Even in case of an outspiral, the binary eventually reaches a large enough mass for GW to take over and drive it to coalescence. The combined action of stellar hardening, mass growth and GW-driven inspiral brings binaries to coalescence in few hundreds Myr at most, implying that gas-driven expansion will not severely affect the detection prospects of upcoming GW facilities.
The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has recently reported evidence for the presence of a common stochastic signal across their array of pulsars. The origin of this signal is still unclear. One of the possibilit
The community may be on the verge of detecting low-frequency gravitational waves from massive black hole binaries (MBHBs), but no examples of binary active galactic nuclei (AGN) have been confirmed. Because MBHBs are intrinsically rare, the most prom
We study the dynamical evolution of eccentric massive black hole binaries (MBHBs) interacting with unbound stars by means of an extensive set of three body scattering experiments. Compared to previous studies, we extend the investigation down to a MB
We present a deep Suzaku observation of H1821+643, an extremely rare example of a powerful quasar hosted by the central massive galaxy of a rich cooling-core cluster of galaxies. Informed by previous Chandra studies of the cluster, we achieve a spect
Understanding the processes that drive galaxy formation and shape the observed properties of galaxies is one of the most interesting and challenging frontier problems of modern astrophysics. We now know that the evolution of galaxies is critically sh