ﻻ يوجد ملخص باللغة العربية
The formation of compact stellar-mass binaries is a difficult, but interesting problem in astrophysics. There are two main formation channels: In the field via binary star evolution, or in dense stellar systems via dynamical interactions. The Laser Interferometer Gravitational-Wave Observatory (LIGO) has detected black hole binaries (BHBs) via their gravitational radiation. These detections provide us with information about the physical parameters of the system. It has been claimed that when the Laser Interferometer Space Antenna (LISA) is operating, the joint observation of these binaries with LIGO will allow us to derive the channels that lead to their formation. However, we show that for BHBs in dense stellar systems dynamical interactions could lead to high eccentricities such that a fraction of the relativistic mergers are not audible to LISA. A non-detection by LISA puts a lower limit of about $0.005$ on the eccentricity of a BHB entering the LIGO band. On the other hand, a deci-Hertz observatory, like DECIGO or Tian Qin, would significantly enhance the chances of a joint detection, and shed light on the formation channels of these binaries.
Multi-frequency gravitational wave (GW) observations are useful probes of the formation processes of coalescing stellar-mass binary black holes (BBHs). We discuss the phase drift in the GW inspiral waveform of the merging BBH caused by its center-of-
We present a Bayesian parameter-estimation pipeline to measure the properties of inspiralling stellar-mass black hole binaries with LISA. Our strategy (i) is based on the coherent analysis of the three noise-orthogonal LISA data streams, (ii) employs
Direct observations of gravitational waves at frequencies around deci-Hertz will play a crucial role in fully exploiting the potential of multi-messenger astronomy. In this chapter, we discuss the detection landscape for the next several decades of t
Galaxy mergers produce supermassive black hole binaries, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries o
Focusing on the remnant black holes after merging binary black holes, we show that ringdown gravitational waves of Population III binary black holes mergers can be detected with the rate of $5.9-500~{rm events~yr^{-1}}~({rm SFR_p}/ (10^{-2.5}~M_odot~