ترغب بنشر مسار تعليمي؟ اضغط هنا

Probabilistic Human Motion Prediction via A Bayesian Neural Network

89   0   0.0 ( 0 )
 نشر من قبل Jie Xu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Human motion prediction is an important and challenging topic that has promising prospects in efficient and safe human-robot-interaction systems. Currently, the majority of the human motion prediction algorithms are based on deterministic models, which may lead to risky decisions for robots. To solve this problem, we propose a probabilistic model for human motion prediction in this paper. The key idea of our approach is to extend the conventional deterministic motion prediction neural network to a Bayesian one. On one hand, our model could generate several future motions when given an observed motion sequence. On the other hand, by calculating the Epistemic Uncertainty and the Heteroscedastic Aleatoric Uncertainty, our model could tell the robot if the observation has been seen before and also give the optimal result among all possible predictions. We extensively validate our approach on a large scale benchmark dataset Human3.6m. The experiments show that our approach performs better than deterministic methods. We further evaluate our approach in a Human-Robot-Interaction (HRI) scenario. The experimental results show that our approach makes the interaction more efficient and safer.

قيم البحث

اقرأ أيضاً

Motion retargeting from human demonstration to robot is an effective way to reduce the professional requirements and workload of robot programming, but faces the challenges resulting from the differences between human and robot. Traditional optimizat ion-based methods is time-consuming and rely heavily on good initialization, while recent studies using feedforward neural networks suffer from poor generalization to unseen motions. Moreover, they neglect the topological information in human skeletons and robot structures. In this paper, we propose a novel neural latent optimization approach to address these problems. Latent optimization utilizes a decoder to establish a mapping between the latent space and the robot motion space. Afterward, the retargeting results that satisfy robot constraints can be obtained by searching for the optimal latent vector. Alongside with latent optimization, neural initialization exploits an encoder to provide a better initialization for faster and better convergence of optimization. Both the human skeleton and the robot structure are modeled as graphs to make better use of topological information. We perform experiments on retargeting Chinese sign language, which involves two arms and two hands, with additional requirements on the relative relationships among joints. Experiments include retargeting various human demonstrations to YuMi, NAO and Pepper in the simulation environment and to YuMi in the real-world environment. Both efficiency and accuracy of the proposed method are verified.
It is a significant problem to predict the 2D LiDAR map at next moment for robotics navigation and path-planning. To tackle this problem, we resort to the motion flow between adjacent maps, as motion flow is a powerful tool to process and analyze the dynamic data, which is named optical flow in video processing. However, unlike video, which contains abundant visual features in each frame, a 2D LiDAR map lacks distinctive local features. To alleviate this challenge, we propose to estimate the motion flow based on deep neural networks inspired by its powerful representation learning ability in estimating the optical flow of the video. To this end, we design a recurrent neural network based on gated recurrent unit, which is named LiDAR-FlowNet. As a recurrent neural network can encode the temporal dynamic information, our LiDAR-FlowNet can estimate motion flow between the current map and the unknown next map only from the current frame and previous frames. A self-supervised strategy is further designed to train the LiDAR-FlowNet model effectively, while no training data need to be manually annotated. With the estimated motion flow, it is straightforward to predict the 2D LiDAR map at the next moment. Experimental results verify the effectiveness of our LiDAR-FlowNet as well as the proposed training strategy. The results of the predicted LiDAR map also show the advantages of our motion flow based method.
Probabilistic vehicle trajectory prediction is essential for robust safety of autonomous driving. Current methods for long-term trajectory prediction cannot guarantee the physical feasibility of predicted distribution. Moreover, their models cannot a dapt to the driving policy of the predicted target human driver. In this work, we propose to overcome these two shortcomings by a Bayesian recurrent neural network model consisting of Bayesian-neural-network-based policy model and known physical model of the scenario. Bayesian neural network can ensemble complicated output distribution, enabling rich family of trajectory distribution. The embedded physical model ensures feasibility of the distribution. Moreover, the adopted gradient-based training method allows direct optimization for better performance in long prediction horizon. Furthermore, a particle-filter-based parameter adaptation algorithm is designed to adapt the policy Bayesian neural network to the predicted target online. Effectiveness of the proposed methods is verified with a toy example with multi-modal stochastic feedback gain and naturalistic car following data.
Human motion prediction aims to predict future 3D skeletal sequences by giving a limited human motion as inputs. Two popular methods, recurrent neural networks and feed-forward deep networks, are able to predict rough motion trend, but motion details such as limb movement may be lost. To predict more accurate future human motion, we propose an Adversarial Refinement Network (ARNet) following a simple yet effective coarse-to-fine mechanism with novel adversarial error augmentation. Specifically, we take both the historical motion sequences and coarse prediction as input of our cascaded refinement network to predict refined human motion and strengthen the refinement network with adversarial error augmentation. During training, we deliberately introduce the error distribution by learning through the adversarial mechanism among different subjects. In testing, our cascaded refinement network alleviates the prediction error from the coarse predictor resulting in a finer prediction robustly. This adversarial error augmentation provides rich error cases as input to our refinement network, leading to better generalization performance on the testing dataset. We conduct extensive experiments on three standard benchmark datasets and show that our proposed ARNet outperforms other state-of-the-art methods, especially on challenging aperiodic actions in both short-term and long-term predictions.
Autonomous driving in mixed traffic requires reliable motion prediction of nearby traffic agents such as pedestrians, bicycles, cars, buses, etc.. This prediction problem is extremely challenging because of the diverse dynamics and geometry of traffi c agents, complex road conditions, and intensive interactions among the agents. In this paper, we proposed GAMMA, a general agent motion prediction model for autonomous driving, that can predict the motion of heterogeneous traffic agents with different kinematics, geometry, human agents inner states, etc.. GAMMA formalizes motion prediction as geometric optimization in the velocity space, and integrates physical constraints and human inner states into this unified framework. Our results show that GAMMA outperforms state-of-the-art approaches significantly on diverse real-world datasets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا