ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Human-Robot Motion Retargeting via Neural Latent Optimization

123   0   0.0 ( 0 )
 نشر من قبل Haodong Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Motion retargeting from human demonstration to robot is an effective way to reduce the professional requirements and workload of robot programming, but faces the challenges resulting from the differences between human and robot. Traditional optimization-based methods is time-consuming and rely heavily on good initialization, while recent studies using feedforward neural networks suffer from poor generalization to unseen motions. Moreover, they neglect the topological information in human skeletons and robot structures. In this paper, we propose a novel neural latent optimization approach to address these problems. Latent optimization utilizes a decoder to establish a mapping between the latent space and the robot motion space. Afterward, the retargeting results that satisfy robot constraints can be obtained by searching for the optimal latent vector. Alongside with latent optimization, neural initialization exploits an encoder to provide a better initialization for faster and better convergence of optimization. Both the human skeleton and the robot structure are modeled as graphs to make better use of topological information. We perform experiments on retargeting Chinese sign language, which involves two arms and two hands, with additional requirements on the relative relationships among joints. Experiments include retargeting various human demonstrations to YuMi, NAO and Pepper in the simulation environment and to YuMi in the real-world environment. Both efficiency and accuracy of the proposed method are verified.



قيم البحث

اقرأ أيضاً

Motion planning for multi-jointed robots is challenging. Due to the inherent complexity of the problem, most existing works decompose motion planning as easier subproblems. However, because of the inconsistent performance metrics, only sub-optimal so lution can be found by decomposition based approaches. This paper presents an optimal control based approach to address the path planning and trajectory planning subproblems simultaneously. Unlike similar works which either ignore robot dynamics or require long computation time, an efficient numerical method for trajectory optimization is presented in this paper for motion planning involving complicated robot dynamics. The efficiency and effectiveness of the proposed approach is shown by numerical results. Experimental results are used to show the feasibility of the presented planning algorithm.
Human motion prediction is non-trivial in modern industrial settings. Accurate prediction of human motion can not only improve efficiency in human robot collaboration, but also enhance human safety in close proximity to robots. Among existing predict ion models, the parameterization and identification methods of those models vary. It remains unclear what is the necessary parameterization of a prediction model, whether online adaptation of the model is necessary, and whether prediction can help improve safety and efficiency during human robot collaboration. These problems result from the difficulty to quantitatively evaluate various prediction models in a closed-loop fashion in real human-robot interaction settings. This paper develops a method to evaluate the closed-loop performance of different prediction models. In particular, we compare models with different parameterizations and models with or without online parameter adaptation. Extensive experiments were conducted on a human robot collaboration platform. The experimental results demonstrated that human motion prediction significantly enhanced the collaboration efficiency and human safety. Adaptable prediction models that were parameterized by neural networks achieved the best performance.
Human motion prediction is an important and challenging topic that has promising prospects in efficient and safe human-robot-interaction systems. Currently, the majority of the human motion prediction algorithms are based on deterministic models, whi ch may lead to risky decisions for robots. To solve this problem, we propose a probabilistic model for human motion prediction in this paper. The key idea of our approach is to extend the conventional deterministic motion prediction neural network to a Bayesian one. On one hand, our model could generate several future motions when given an observed motion sequence. On the other hand, by calculating the Epistemic Uncertainty and the Heteroscedastic Aleatoric Uncertainty, our model could tell the robot if the observation has been seen before and also give the optimal result among all possible predictions. We extensively validate our approach on a large scale benchmark dataset Human3.6m. The experiments show that our approach performs better than deterministic methods. We further evaluate our approach in a Human-Robot-Interaction (HRI) scenario. The experimental results show that our approach makes the interaction more efficient and safer.
Much work in robotics has focused on human-in-the-loop learning techniques that improve the efficiency of the learning process. However, these algorithms have made the strong assumption of a cooperating human supervisor that assists the robot. In rea lity, human observers tend to also act in an adversarial manner towards deployed robotic systems. We show that this can in fact improve the robustness of the learned models by proposing a physical framework that leverages perturbations applied by a human adversary, guiding the robot towards more robust models. In a manipulation task, we show that grasping success improves significantly when the robot trains with a human adversary as compared to training in a self-supervised manner.
In reinforcement learning (RL), sparse rewards are a natural way to specify the task to be learned. However, most RL algorithms struggle to learn in this setting since the learning signal is mostly zeros. In contrast, humans are good at assessing and predicting the future consequences of actions and can serve as good reward/policy shapers to accelerate the robot learning process. Previous works have shown that the human brain generates an error-related signal, measurable using electroencephelography (EEG), when the human perceives the task being done erroneously. In this work, we propose a method that uses evaluative feedback obtained from human brain signals measured via scalp EEG to accelerate RL for robotic agents in sparse reward settings. As the robot learns the task, the EEG of a human observer watching the robot attempts is recorded and decoded into noisy error feedback signal. From this feedback, we use supervised learning to obtain a policy that subsequently augments the behavior policy and guides exploration in the early stages of RL. This bootstraps the RL learning process to enable learning from sparse reward. Using a robotic navigation task as a test bed, we show that our method achieves a stable obstacle-avoidance policy with high success rate, outperforming learning from sparse rewards only that struggles to achieve obstacle avoidance behavior or fails to advance to the goal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا