ﻻ يوجد ملخص باللغة العربية
Motion retargeting from human demonstration to robot is an effective way to reduce the professional requirements and workload of robot programming, but faces the challenges resulting from the differences between human and robot. Traditional optimization-based methods is time-consuming and rely heavily on good initialization, while recent studies using feedforward neural networks suffer from poor generalization to unseen motions. Moreover, they neglect the topological information in human skeletons and robot structures. In this paper, we propose a novel neural latent optimization approach to address these problems. Latent optimization utilizes a decoder to establish a mapping between the latent space and the robot motion space. Afterward, the retargeting results that satisfy robot constraints can be obtained by searching for the optimal latent vector. Alongside with latent optimization, neural initialization exploits an encoder to provide a better initialization for faster and better convergence of optimization. Both the human skeleton and the robot structure are modeled as graphs to make better use of topological information. We perform experiments on retargeting Chinese sign language, which involves two arms and two hands, with additional requirements on the relative relationships among joints. Experiments include retargeting various human demonstrations to YuMi, NAO and Pepper in the simulation environment and to YuMi in the real-world environment. Both efficiency and accuracy of the proposed method are verified.
Motion planning for multi-jointed robots is challenging. Due to the inherent complexity of the problem, most existing works decompose motion planning as easier subproblems. However, because of the inconsistent performance metrics, only sub-optimal so
Human motion prediction is non-trivial in modern industrial settings. Accurate prediction of human motion can not only improve efficiency in human robot collaboration, but also enhance human safety in close proximity to robots. Among existing predict
Human motion prediction is an important and challenging topic that has promising prospects in efficient and safe human-robot-interaction systems. Currently, the majority of the human motion prediction algorithms are based on deterministic models, whi
Much work in robotics has focused on human-in-the-loop learning techniques that improve the efficiency of the learning process. However, these algorithms have made the strong assumption of a cooperating human supervisor that assists the robot. In rea
In reinforcement learning (RL), sparse rewards are a natural way to specify the task to be learned. However, most RL algorithms struggle to learn in this setting since the learning signal is mostly zeros. In contrast, humans are good at assessing and