ﻻ يوجد ملخص باللغة العربية
It is a significant problem to predict the 2D LiDAR map at next moment for robotics navigation and path-planning. To tackle this problem, we resort to the motion flow between adjacent maps, as motion flow is a powerful tool to process and analyze the dynamic data, which is named optical flow in video processing. However, unlike video, which contains abundant visual features in each frame, a 2D LiDAR map lacks distinctive local features. To alleviate this challenge, we propose to estimate the motion flow based on deep neural networks inspired by its powerful representation learning ability in estimating the optical flow of the video. To this end, we design a recurrent neural network based on gated recurrent unit, which is named LiDAR-FlowNet. As a recurrent neural network can encode the temporal dynamic information, our LiDAR-FlowNet can estimate motion flow between the current map and the unknown next map only from the current frame and previous frames. A self-supervised strategy is further designed to train the LiDAR-FlowNet model effectively, while no training data need to be manually annotated. With the estimated motion flow, it is straightforward to predict the 2D LiDAR map at the next moment. Experimental results verify the effectiveness of our LiDAR-FlowNet as well as the proposed training strategy. The results of the predicted LiDAR map also show the advantages of our motion flow based method.
Human motion prediction is an important and challenging topic that has promising prospects in efficient and safe human-robot-interaction systems. Currently, the majority of the human motion prediction algorithms are based on deterministic models, whi
Compared to the onboard camera and laser scanner, radar sensor provides lighting and weather invariant sensing, which is naturally suitable for long-term localization under adverse conditions. However, radar data is sparse and noisy, resulting in cha
The rapid development of autonomous driving and mobile mapping calls for off-the-shelf LiDAR SLAM solutions that are adaptive to LiDARs of different specifications on various complex scenarios. To this end, we propose MULLS, an efficient, low-drift,
Although Structure-from-Motion (SfM) as a maturing technique has been widely used in many applications, state-of-the-art SfM algorithms are still not robust enough in certain situations. For example, images for inspection purposes are often taken in
For mobile robots navigating on sidewalks, it is essential to be able to safely cross street intersections. Most existing approaches rely on the recognition of the traffic light signal to make an informed crossing decision. Although these approaches