ترغب بنشر مسار تعليمي؟ اضغط هنا

Federated Intrusion Detection for IoT with Heterogeneous Cohort Privacy

81   0   0.0 ( 0 )
 نشر من قبل Ajesh Koyatan Chathoth
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Internet of Things (IoT) devices are becoming increasingly popular and are influencing many application domains such as healthcare and transportation. These devices are used for real-world applications such as sensor monitoring, real-time control. In this work, we look at differentially private (DP) neural network (NN) based network intrusion detection systems (NIDS) to detect intrusion attacks on networks of such IoT devices. Existing NN training solutions in this domain either ignore privacy considerations or assume that the privacy requirements are homogeneous across all users. We show that the performance of existing differentially private stochastic methods degrade for clients with non-identical data distributions when clients privacy requirements are heterogeneous. We define a cohort-based $(epsilon,delta)$-DP framework that models the more practical setting of IoT device cohorts with non-identical clients and heterogeneous privacy requirements. We propose two novel continual-learning based DP training methods that are designed to improve model performance in the aforementioned setting. To the best of our knowledge, ours is the first system that employs a continual learning-based approach to handle heterogeneity in client privacy requirements. We evaluate our approach on real datasets and show that our techniques outperform the baselines. We also show that our methods are robust to hyperparameter changes. Lastly, we show that one of our proposed methods can easily adapt to post-hoc relaxations of client privacy requirements.



قيم البحث

اقرأ أيضاً

Federated learning (FL) is a distributed learning methodology that allows multiple nodes to cooperatively train a deep learning model, without the need to share their local data. It is a promising solution for telemonitoring systems that demand inten sive data collection, for detection, classification, and prediction of future events, from different locations while maintaining a strict privacy constraint. Due to privacy concerns and critical communication bottlenecks, it can become impractical to send the FL updated models to a centralized server. Thus, this paper studies the potential of hierarchical FL in IoT heterogeneous systems and propose an optimized solution for user assignment and resource allocation on multiple edge nodes. In particular, this work focuses on a generic class of machine learning models that are trained using gradient-descent-based schemes while considering the practical constraints of non-uniformly distributed data across different users. We evaluate the proposed system using two real-world datasets, and we show that it outperforms state-of-the-art FL solutions. In particular, our numerical results highlight the effectiveness of our approach and its ability to provide 4-6% increase in the classification accuracy, with respect to hierarchical FL schemes that consider distance-based user assignment. Furthermore, the proposed approach could significantly accelerate FL training and reduce communication overhead by providing 75-85% reduction in the communication rounds between edge nodes and the centralized server, for the same model accuracy.
The application of Machine Learning (ML) techniques to the well-known intrusion detection systems (IDS) is key to cope with increasingly sophisticated cybersecurity attacks through an effective and efficient detection process. In the context of the I nternet of Things (IoT), most ML-enabled IDS approaches use centralized approaches where IoT devices share their data with data centers for further analysis. To mitigate privacy concerns associated with centralized approaches, in recent years the use of Federated Learning (FL) has attracted a significant interest in different sectors, including healthcare and transport systems. However, the development of FL-enabled IDS for IoT is in its infancy, and still requires research efforts from various areas, in order to identify the main challenges for the deployment in real-world scenarios. In this direction, our work evaluates a FL-enabled IDS approach based on a multiclass classifier considering different data distributions for the detection of different attacks in an IoT scenario. In particular, we use three different settings that are obtained by partitioning the recent ToN_IoT dataset according to IoT devices IP address and types of attack. Furthermore, we evaluate the impact of different aggregation functions according to such setting by using the recent IBMFL framework as FL implementation. Additionally, we identify a set of challenges and future directions based on the existing literature and the analysis of our evaluation results.
Advances in deep neural networks (DNN) greatly bolster real-time detection of anomalous IoT data. However, IoT devices can hardly afford complex DNN models, and offloading anomaly detection tasks to the cloud incurs long delay. In this paper, we prop ose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems to solve this problem, for both univariate and multivariate IoT data. First, we construct multiple anomaly detection DNN models with increasing complexity, and associate each model with a layer in HEC from bottom to top. Then, we design an adaptive scheme to select one of these models on the fly, based on the contextual information extracted from each input data. The model selection is formulated as a contextual bandit problem characterized by a single-step Markov decision process, and is solved using a reinforcement learning policy network. We build an HEC testbed, implement our proposed approach, and evaluate it using real IoT datasets. The demo shows that our proposed approach significantly reduces detection delay (e.g., by 71.4% for univariate dataset) without sacrificing accuracy, as compared to offloading detection tasks to the cloud. We also compare it with other baseline schemes and demonstrate that it achieves the best accuracy-delay tradeoff. Our demo is also available online: https://rebrand.ly/91a71
The Internet of Things (IoT) revolution has shown potential to give rise to many medical applications with access to large volumes of healthcare data collected by IoT devices. However, the increasing demand for healthcare data privacy and security ma kes each IoT device an isolated island of data. Further, the limited computation and communication capacity of wearable healthcare devices restrict the application of vanilla federated learning. To this end, we propose an advanced federated learning framework to train deep neural networks, where the network is partitioned and allocated to IoT devices and a centralized server. Then most of the training computation is handled by the powerful server. The sparsification of activations and gradients significantly reduces the communication overhead. Empirical study have suggested that the proposed framework guarantees a low accuracy loss, while only requiring 0.2% of the synchronization traffic in vanilla federated learning.
Critical role of Internet of Things (IoT) in various domains like smart city, healthcare, supply chain and transportation has made them the target of malicious attacks. Past works in this area focused on centralized Intrusion Detection System (IDS), assuming the existence of a central entity to perform data analysis and identify threats. However, such IDS may not always be feasible, mainly due to spread of data across multiple sources and gathering at central node can be costly. Also, the earlier works primarily focused on improving True Positive Rate (TPR) and ignored the False Positive Rate (FPR), which is also essential to avoid unnecessary downtime of the systems. In this paper, we first present an architecture for IDS based on hybrid ensemble model, named PHEC, which gives improved performance compared to state-of-the-art architectures. We then adapt this model to a federated learning framework that performs local training and aggregates only the model parameters. Next, we propose Noise-Tolerant PHEC in centralized and federated settings to address the label-noise problem. The proposed idea uses classifiers using weighted convex surrogate loss functions. Natural robustness of KNN classifier towards noisy data is also used in the proposed architecture. Experimental results on four benchmark datasets drawn from various security attacks show that our model achieves high TPR while keeping FPR low on noisy and clean data. Further, they also demonstrate that the hybrid ensemble models achieve performance in federated settings close to that of the centralized settings.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا