ترغب بنشر مسار تعليمي؟ اضغط هنا

Infrared dielectric functions and Brillouin zone center phonons of $alpha$-Ga$_2$O$_3$ compared to $alpha$-Al$_2$O$_3$

94   0   0.0 ( 0 )
 نشر من قبل Megan Stokey
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We determine the anisotropic dielectric functions of rhombohedral $alpha$-Ga$_2$O$_3$ by far-infrared and infrared generalized spectroscopic ellipsometry and derive all transverse optical and longitudinal optical phonon mode frequencies and broadening parameters. We also determine the high frequency and static dielectric constants. We perform density functional theory computations and determine the phonon dispersion for all branches in the Brillouin zone, and we derive all phonon mode parameters at the Brillouin zone center including Raman-active, infrared-active, and silent modes. Excellent agreement is obtained between our experimental and computation results as well as among all previously reported partial information from experiment and theory. We also compute the same information for $alpha$-Al$_2$O$_3$, the binary parent compound for the emerging alloy of $alpha$-(Al$_{x}$Ga$_{1-x}$)$_2$O$_3$, and use results from previous investigations [Schubert, Tiwald, and Herzinger, Phys. Rev. B 61, 8187 (2000)] to compare all properties among the two isostructural compounds. From both experimental and theoretical investigations we compute the frequency shifts of all modes between the two compounds. Additionally, we calculate overlap parameters between phonon mode eigenvectors and discuss the possible evolution of all phonon modes into the ternary alloy system and whether modes may form single mode or more complex mode behaviors.

قيم البحث

اقرأ أيضاً

118 - Alaska Subedi 2021
I use first principles calculations to investigate the thermal conductivity of $beta$-In$_2$O$_3$ and compare the results with that of $alpha$-Al$_2$O$_3$, $beta$-Ga$_2$O$_3$, and KTaO$_3$. The calculated thermal conductivity of $beta$-In$_2$O$_3$ ag rees well with the experimental data obtain recently, which found that the low-temperature thermal conductivity in this material can reach values above 1000 W/mK. I find that the calculated thermal conductivity of $beta$-Ga$_2$O$_3$ is larger than that of $beta$-In$_2$O$_3$ at all temperatures, which implies that $beta$-Ga$_2$O$_3$ should also exhibit high values of thermal conductivity at low temperatures. The thermal conductivity of KTaO$_3$ calculated ignoring the temperature-dependent phonon softening of low-frequency modes give high-temperature values similar that of $beta$-Ga$_2$O$_3$. However, the calculated thermal conductivity of KTaO$_3$ does not increase as steeply as that of the binary compounds at low temperatures, which results in KTaO$_3$ having the lowest low-temperature thermal conductivity despite having acoustic phonon velocities larger than that of $beta$-Ga$_2$O$_3$ and $beta$-In$_2$O$_3$. I attribute this to the fact that the acoustic phonon velocities at low frequencies in KTaO$_3$ is less uniformly distributed because its acoustic phonon branches are more dispersive compared to the binary oxides, which causes enhanced momentum loss even during the normal phonon-phonon scattering processes. I also calculate thermal diffusivity using the theoretically obtained thermal conductivity and heat capacity and find that all four materials exhibit the expected $T^{-1}$ behavior at high temperatures. Additionally, the calculated ratio of the average phonon scattering time to Planckian time is larger than the lower bound of 1 that has been observed empirically in numerous other materials.
Gallium oxide films were grown by HVPE on (0001) sapphire substrates with and without $alpha$-Cr$_2$O$_3$ buffer produced by RF magnetron sputtering. Deposition on bare sapphire substrates resulted in a mixture of $alpha$-Ga$_2$O$_3$ and $epsilon$-Ga $_2$O$_3$ phases with a dislocation density of about $2cdot10^{10}$ cm$^{-2}$. The insertion of $alpha$-Ga$_2$O$_3$ buffer layers resulted in phase-pure $alpha$-Ga$_2$O$_3$ films and a fourfold reduction of the dislocation density to $5 cdot 10^9$ cm$^{-2}$.
$beta$-Ga$_2$O$_3$ is a promising ultra-wide bandgap semiconductor whose properties can be further enhanced by alloying with Al. Here, using atomic-resolution scanning transmission electron microscopy (STEM), we find the thermodynamically-unstable $g amma$-phase is a ubiquitous defect in both $beta$-(Al$_x$Ga$_{1text{-}x}$)$_2$O$_3$ films and doped $beta$-Ga$_2$O$_3$ films grown by molecular beam epitaxy. For undoped $beta$-(Al$_x$Ga$_{1text{-}x}$)$_2$O$_3$ films we observe $gamma$-phase inclusions between nucleating islands of the $beta$-phase at lower growth temperatures (~400-600 $^{circ}$C). In doped $beta$-Ga$_2$O$_3$, a thin layer of the $gamma$-phase is observed on the surfaces of films grown with a wide range of n-type dopants and dopant concentrations. The thickness of the $gamma$-phase layer was most strongly correlated with the growth temperature, peaking at about 600 $^{circ}$C. Ga interstitials are observed in $beta$-phase, especially near the interface with the $gamma$-phase. By imaging the same region of the surface of a Sn-doped $beta$-(Al$_x$Ga$_{1text{-}x}$)$_2$O$_3$ after ex-situ heating up to 400 $^{circ}$C, a $gamma$-phase region is observed to grow above the initial surface, accompanied by a decrease in Ga interstitials in the $beta$-phase. This suggests that the diffusion of Ga interstitials towards the surface is likely the mechanism for growth of the surface $gamma$-phase, and more generally that the more-open $gamma$-phase may offer diffusion pathways to be a kinetically-favored and early-forming phase in the growth of Ga$_2$O$_3$.
We report on the study of optical properties of mist CVD grown alpha Gallium oxide with the observation of excitonic absorption in spectral responsivity measurements. 163 nm of Gallium oxide was grown on sapphire using Gallium acetylacetonate as the starting solution at a substrate temperature of 450 deg C. The film was found to be crystalline and of alpha phase with an on axis full width at half maximum of 92 arcsec as confirmed from X ray diffraction scans. The Taucs plot extracted from absorption spectroscopy exhibited two transitions in the UV regime at 5.3 eV and 5.6 eV, corresponding to excitonic absorption and direct band to band transition respectively. The binding energy of exciton was extracted to be 114 meV from spectral responsivity measurements. Further, metal semiconductor metal photodetectors with lateral inter digitated geometry were fabricated on the film. A sharp band edge was observed at 230 nm in the spectral response with peak responsivity of around 1 Amperes per Watt at a bias of 20 V. The UV to visible rejection ratio was found to be around 100 while the dark current was measured to be around 0.1 nA.
Based on first-principles calculations, we show that the maximum reachable concentration $x$ in the (Ga$_{1-x}$In$_x$)$_2$O$_3$ alloy in the low-$x$ regime (i.e. In solubility in $beta$-Ga$_2$O$_3$) is around 10%. We then calculate the band alignment at the (100) interface between $beta$-Ga$_2$O$_3$ and (Ga$_{1-x}$In$_x$)$_2$O$_3$ at 12%, the nearest computationally treatable concentration. The alignment is strongly strain-dependent: it is of type-B staggered when the alloy is epitaxial on Ga$_2$O$_3$, and type-A straddling in a free-standing superlattice. Our results suggest a limited range of applicability of low-In-content GaInO alloys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا